[®®|

umm?m;

Measuring the Rarefaction Wave Dynamics from Shock
Release in Spherical Geometry
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The kinetic energy of shock release was measured in warm
polystyrene targets using a spherical cone-in-shell platform
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« The kinetic energy of shock release material determines the stagnation pressure in
an ICF* implosion

« Measurements indicate moderately lower kinetic energy in the shock release than
predicted by hydrocodes

« The effect of radiation preheat on the shock release measurements was found to
be insignificant

No indication was found that the shock release could be

responsible for lower-than-expected implosion convergence

ICF: Inertial Confinement Fusion
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Shock release in inertial confinement fusion implosions

UR

LLE

« The laser is used to drive a shock in the shell,
setting the adiabat

« Material from the inner shell surface is
released at shock breakout
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Shock release in inertial confinement fusion implosions
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The kinetic energy of the converging release
material is converted to internal energy of the
hotspot

The initial hotspot pressure P, determines the
final pressure at stagnation P,

-3/2
Pstag x P, /

Initial hotspot pressure set by the
kinetic energy of the release mass
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Experiments were designed to probe the material in the bulk
of the shock release
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Haberberger et al. experiments
indicate the leading edge of the
release moving faster than predicted

— Material originates within a
fraction of a micron from the
surface

Possible causes include:
— Radiation preheat*
— Species separation**
The current experiments measure

the kinetic energy of several microns
of release material
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In-flight density profile of the shock release
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* D. Haberberger et al., Phys. Rev. Lett. 123, 235001 (2019).
** 8. Zhang and S. X. Hu, Phys. Rev. Lett. 125, 105001 (2020).



A cone-in-shell platform with a solid hemisphere witness was used to
measure the shock release into vacuum

Polystyrene shell
(960 pm)

Fused silica
hemisphere
(500 pm)
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Picket pulses with varying intensity
were used to drive the shock
| | | |

— Low intensity
— High intensity

VISAR

Laser Intensity (x10"* W/cm?)

| | | |
0 100 200 300

Time (ps)

* VISAR: velocity interferometer system for any reflector




A cone-in-shell platform with a solid hemisphere witness was used to
measure the shock release into vacuum
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Polystyrene shell LLE
(960 pm) Picket pulses with varying intensity
were used to drive the shock
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* VISAR: velocity interferometer system for any reflector
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The release material drives a strong (>1-Mbar) shock in the witnhess
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Weak signatures of radiation preheat of the witness were
evident in the VISAR signal
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Shock velocity measurements in the withess were not affected
by radiation preheat
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Dedicated experiments were performed with simple cone-in-shell targets to
measure the time of shock breakout from the inner shell surface
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« VISAR and SOP* measurements were

used to determine the shock breakout 30-pm-thick
time polystyrene
shell

Measured shock | Simulated shock
breakout time breakout time
Low intensity 480 + 60 ps 550 ps
High intensity 370 £ 60 ps 510 ps

VISAR

* SOP: streaked optical pyrometry




VISAR measurements of release-driven shock velocity in the
witness were obtained
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« Time of release collision with the witness is well predicted by the simulations
» Shock velocity is over-predicted by £10-15% in the simulations
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Summary/Conclusions

The kinetic energy of shock release was measured in warm
polystyrene targets using a spherical cone-in-shell platform
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« The kinetic energy of shock release material determines the stagnation pressure in
an ICF implosion

« Measurements indicate moderately lower kinetic energy in the shock release than
predicted by hydrocodes

« The effect of radiation preheat on the shock release measurements was found to
be insignificant

No indication was found that the shock release could be
responsible for lower-than-expected implosion convergence
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