A Systematic Study of Laser Imprint for Direct Drive—From Seeds
to Integrated Implosions
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Imprint limits the performance of high-compression, OMEGA cryogenic

implosions at low but not high adiabats
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The sensitivity of a (adiabat) = 4.5 and a = 3.5 designs to laser imprinting was
assessed for high yield targets (> 1074) using a series of implosions with varying
Smoothing by Spectral Dispersion (SSD) bandwidth levels

Planar foil experiments were carried out to measure single-beam imprint

2d, Draco hydrodynamic simulations show the same trends as the experimental data
Low adiabat, a < 3.5, implosions would benefit from higher SSD bandwidth to reduce
imprint perturbation

High adiabat, o > 4.5, implosions are not dominated by imprint perturbation

Current high-performance cryogenic implosions on OMEGA are not limited by
imprint
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The goal of the SSD Scan experiment was to study the how laser imprint
seeds high-mode perturbations
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Varying the SSD bandwidth significantly changes the high-mode perturbation seeds
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The parameter | is used to quantify the stability to short wavelength (SW)
perturbations of OMEGA cryogenic implosions?2
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SSD Scan experiment probed two
values of the stability parameter I

. . . " Goncharov, V. N., et al. Physics of Plasmas
The SSD Scan implosions with o = 3.5 are unstable 21.5 (2014): 056315
2 Lees, A.et al. Physics of Plasmas submitted
3Zhang et al, PRL (2018)
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An SSD scan from 0 to maximum bandwidth has been completed for two
adiabats, a = 4.5 and a = 3.5, to study the effect of high mode perturbations
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Pulse shapes were very reproducible
1S. Skupsky, et al., J. Appl. Phys. 66, 3456 (1989).
2S. P. Regan, et al., J. Opt. Soc. Am. B 17, 1483 (2000).
3S. P. Regan, et al., J. Opt. Soc. Am. B 22, 998 (2005).
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A “hard sphere” model is used to calculate the overlap intensity from single-beam

far fields calculated by convolving the DPP far field with the SSD kernel
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Data are obtained from six experimental measurements
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Yield, ion temperature, and areal density are measured along multiple
lines-of-sight
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OHRV' (2d-VISAR) probes the shock front, related to imposed modulation on
the ablation surface, providing a 2d map of the shock speed perturbation
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Perturbation from single beam measured?

1 beam Planar geometry used

850 um DPP OHRYV resolution = 3 pm
100 ps pulse length Integration time = 2 ps
20 J total energy Measurement taken ~1 ns after 100 ps
picket
50000 my 0 bandwidth and maximum bandwidth SSD
/ measured
3000 pm

1P. M. Celliers, et al. Rev. Sci. Instrum. 81, 035101 (2010)
2J. L. Peebles et al. Phys Rev E 99(6)
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The perturbation of shock wave speed was measured for 0 and

maximum SSD bandwidth'
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2d VISAR-speed ogys shows that SSD at maximum bandwidth
reduces the high-mode, Z > 30, perturbations
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Statistical modeling (SM) of experimental data mapped onto simulated data is
used to predict implosion performance and extract physical dependencies
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V. Gopalaswamy et. al, Nature 565, 581-586 (2019)
2 A. Lees et al, Phys. Rev. Lett. 127, 105001 (2021)
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Statistical modeling (SM) of experimental data mapped onto simulated data is
used to predict implosion performance and extract physical dependencies
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Shot-to-shot variations due to the /=1 mode are significant and their impact
needs to be accounted for especially when comparing low adiabat implosions
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The SM predictions are used to adjust for shot-to-shot variations when comparing implosion
results as the SSD bandwidth is varied
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LILAC, 1d-hydro simulations show good agreement of simulated versus
measured time of peak neutron emission (Bang Times)
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DRACO'S simulations scanning SSD bandwidth use latest physics models and
include perturbation modes up to £ =124
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P. B. Radha et al., Physics of Plasmas 12, 056307 (2005) 4J. Marozas, APS DPP 2009
2J. Marozas e al, Phys. Rev. Lett. 120, 085001 (2018) 5R. Epstein, Journal of Applied Physics 82, 2123 (1997)

3D. Cao et al, Phys. Plasmas 22, 082308 (2015)
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DRACO simulations show a cold fuel shell that is highly perturbed and

decompressed at peak compression when SSD is turned off
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Neutron yield normalized to the statistical model shows different dependence on

illumination 6, for low and high adiabat implosions
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pR shows a similar dependence on illumination o, as the yield
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pR shows a similar dependence on lllumination o, as the yield
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Measured minimum ion temperature shows a similar dependence

versus lllumination oy,
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Burn width and size of the hot-spot, x-ray emission follow trends consistent
with imprinting degrading low adiabats even at maximum SSD bandwidth
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Draco shows a similar slope to experimental data when
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Neutron yield, areal density and ion temperature exhibit consistent behavior

when plotted vs laser bandwidth (i.e. SSD fraction)
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All ignition-relevant core properties (Yield, pR, T;,,)
would benefit from higher bandwidth at low
adiabats (< 3.5) while high adiabat (>4.5) is
insensitive



Summary/Conclusions

Imprint limits the performance of high-compression, OMEGA cryogenic

implosions at low but not high adiabats LR

LLE

* The sensitivity of o (adiabat) = 4.5 and a = 3.5 designs to laser imprinting was
assessed for high yield targets (> 1074) using a series of implosions with varying
Smoothing by Spectral Dispersion (SSD) bandwidth levels

* Planar foil experiments were carried out to measure single-beam imprint

* 2d, Draco hydrodynamic simulations show the same trends as the experimental data

* Low adiabat, a < 3.5, implosions would benefit from higher SSD bandwidth to reduce
imprint perturbation

« High adiabat, a > 4.5, implosions are not dominated by imprint perturbation

» Current high-performance cryogenic implosions on OMEGA are not limited by
imprint
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Abstract
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A study of laser imprint for laser direct drive (LDD) is presented through measurements of laser-imprint seeds, the
associated hydrodynamic instability growth rates, the shell thickness, and a systematic integrated study of the
performance of imploded cryogenic DT ice and gas-filled shell targets under varying imprint seed levels and for two
adiabat conditions. An understanding of how those implosions are degraded with the seed level is of paramount
importance for inertial confinement fusion research. The seeds for imprint come from perturbations on the target
[debris, surface imperfections, and engineering features] and from the speckle pattern in the laser beams and are
amplified by the Richtmyer—Meshkov and Rayleigh—Taylor instabilities. Target seeds are minimized by careful
selection and the imprint seed is changed by varying the bandwidth on smoothing by spectral dispersion (SSD). The
seeds were characterized using a 2-D VISAR diagnostic and compared to results from radiation-hydrodynamic
simulations. Growth-rate measurements and effects of the instabilities on the in-flight shell thickness and shell
trajectory are discussed. The integrated experiment uses the stagnation measurements (neutron yield, areal density,
x-ray images of hot-spot formation, fusion burn history) as metrics to gauge the implosion performance versus SSD
bandwidth. The SSD bandwidth is quantified using a model that relates it to the [_fms of the laser illumination. The
emerging understanding of laser imprint from the OMEGA experiments will be discussed along with mitigation
strategies and the implications for LDD ignition-scale targets for the National Ignition Facility. This material is based
upon work supported by the Department of Energy National Nuclear Security Administration under Award Number
DE-NA0003856.
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PROC (pR.,/PR ) is correlated with the Burn Width ratio
(Burn Width,, /Burn Width, »c)
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