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Introduction
• To understand the behavior of materials compressed to 

extreme conditions, it would be desirable to perform large-

scale molecular dynamics (MD) simulations. However, the 

high-fidelity simulation results still rely on high-accuracy 

force field.

• DF-QMD is helpful but fails to work efficiently with a larger 

scale of extreme condition atom data.

• This study takes advantage of recent developments in  

machine learning (i.e., DeepMD-kit1) in recent years and 

aims at developing potential models with ab initio accuracy 

to study materials at extreme conditions.

• Application of deep-learning potentials for MD simulations 

of iron at planetary-core conditions (temperatures 

T=6000~8000K and pressure P= 300~400GPa ). 

• Simulation reviews  high accuracy the deep-learning 

potential compares to ab initio MD potential model.

• Simulation shows cooperative diffusion along <111> 

directions of body-centered cubic iron, a special state of 

iron near melting that has many geophysical implications2.

Results Future Work
• Continue the training with a different 

temperature QMD data to get a universal 

potential model for BCC iron in high 

accuracy, this model can thus be used to 

start accurate simulation at 9000K+ 

temperature condition. And help 

understanding and answering some open 

questions in planetary science (i.e., how 

planet core form).
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• The reference data are generated from 

quantum molecular dynamics (QMD) 

simulations based on Kohn-Sham-Mermin

density functional theory. These 

simulations are for BCC iron at various 

temperatures along a 13.9-g/cm^3 

isochore. The calculations are based on 

128-atom cell, 2x2x2 k mesh, with NVT 

ensembles generated by using a Nosé–

Hoover thermostat2.

• The data are passed and mapped into 

descriptors Di with translational, rotational, 

and permutational symmetries preserved. Fig.1 Workflow of training and pre-simulation process 

Fig.2 Loss figure of 7000K potential model generated by DeepMD-kit Fig.3 Comparison of radial distribution function 

between data generated by LAMMPS and KS-DFT

Fig.4 Cooperative diffusion along <111> direction 

from LAMMPS simulation

• A feedforward network in which descriptor data flows from the input layer as Di, through multiple hidden mapping 

layers, to the output layer and generates the atomic energy Ei. The mathematical equation for this process is 𝐸𝑖 =
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1 ∙ 𝐷𝑖.Here the Li is the mapping layers, which is a composition of a linear transformation 

and a non-linear transformation.

• The final prediction data are then calculated (i.e., The force on the ith atom is computed by taking the negative 

gradient of the system energy with respect to its position) and generate a potential model, 

• The potential will be used with atomistic BCC iron structure file as input for LAMMPS3 NVT and NPT simulations. 

• The loss is defined as a sum of different mean square errors of the 

DNN predictions by 𝐿 𝑃𝜖 , 𝑃𝑓 , 𝑃𝜉 =
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where ∆𝐸, ∆𝐹𝑖 and ∆Ξ denote root mean square (RMS) error in 

energy, force, and virial, respectively. And 𝑃𝜖 , 𝑃𝑓, 𝑃𝜉 are perfectors.

• The RMSE of energy, force and virial (per 2000-atom cell and units 

are eV, eV/Å and eV, respectively) in both training and validation sets 

decrease significantly after 1,000,000 steps of training.

• Dataset consist of 5000 snapshots (3000 for training and 2000 for 

validation), the total time of 1,000,000 steps of training is ~24h. 

• In both 6000K and 7000K, the 

radial distribution function lines 

of LAMMPS simulation results 

match those of KS-DFT’s.

• The preferable match of both 

simulation results reveal a high 

accuracy of the deep-learning 

based potential model.

• Our 2000-atom machine-

learning MD simulations 

reconfirm our QMD findings that 

cooperative diffusion of iron 

occurs along <111> directions in 

bcc iron.


