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Summary

• An approximate force difference is constructed in terms of the neighboring ion positions allowing 
for a neural network to be used to predict each neighbor’s contribution to the force difference.

A neural network-based machine learning model has been constructed to predict ionic 
force differences between Kohn-Sham and orbital-free density functional theory.

Results from molecular dynamic simulations indicate the model can reproduce 
the Kohn-Sham electronic energy and pressure within 1 and 2% respectively.

• The input of the model is constructed from information about the configuration of neighboring ions.

• The model has been trained and tested on warm dense hydrogen at 1.0 g/cm3 between 10 and 150 kK.

• The transferability of the model to temperatures outside of the training set indicates future work on 
descriptors for ML models of warm dense matter simulations is needed.

J. Hinz et al, Phys. Rev. Materials (under review).
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Ab initio molecular dynamic simulations require a delicate balance of accuracy and 
computational cost.

V. V. Karasiev, et al, Comput. Phys. Comm. 185, 3240, 2014.

• Kohn-Sham density functional theory (KS-DFT) has become the 
primary work horse for the quantum treatment of electrons.

• However, KS-DFT has a computational cost that scales cubically 
with the system temperature.

• Alternatively, orbital-free (OF) DFT is order of magnitude faster 
but has a limited range of acceptable accuracy.

• Machine learning (ML) can be used to produce a model for the 
ionic force that captures the best of both DFT branches.

𝑭𝑭𝑲𝑲𝑲𝑲 = 𝑭𝑭𝑶𝑶𝑶𝑶 + ∆𝑭𝑭𝑴𝑴𝑴𝑴
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An approximate force difference can be obtained in terms of the ionic positions.

V. V. Karasiev, et al, Comput. Phys. Comm. 185, 3240, 2014.

∆𝑭𝑭𝒊𝒊
𝒓𝒓𝒓𝒓𝒓𝒓= 𝒌𝒌𝒒𝒒𝟐𝟐𝒁𝒁𝒊𝒊 �𝒅𝒅𝟑𝟑𝒓𝒓

∆𝒏𝒏𝟎𝟎 𝒓𝒓

𝒓𝒓 − 𝑹𝑹𝒊𝒊
𝟑𝟑 𝒓𝒓 − 𝑹𝑹𝒊𝒊

Reference force difference:

Approximations:

Approximate force difference:

∆𝑭𝑭𝒊𝒊 ≈�
𝒋𝒋

𝒘𝒘𝒊𝒊𝒊𝒊
𝑹𝑹𝒊𝒊𝒊𝒊
𝑹𝑹𝒊𝒊𝒊𝒊

𝑹𝑹𝒄𝒄

Reference ion First Neighbor (FN)
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Note: In practice we do not create these sub volumes but rather they will be learned implicitly     
through the learning of the weights.

Reference ion First Neighbor (FN)

𝒘𝒘𝒊𝒊𝒊𝒊 = 𝑴𝑴𝑴𝑴 𝒅𝒅𝒊𝒊𝒊𝒊
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For each FN, information about its neighbors is used to construct the descriptor 
vector needed to predict that FN’s contribution to the force difference.

FN descriptor vector:
1st nearest 
neighbor

2nd nearest 
neighbor

3rd nearest 
neighbor

FN

𝑹𝑹𝑭𝑭𝑭𝑭

𝑹𝑹𝑭𝑭𝑭𝑭

FN

Ref. ion

𝑹𝑹𝑭𝑭𝑭𝑭,𝑵𝑵𝟏𝟏

𝑹𝑹𝑭𝑭𝑭𝑭,𝑵𝑵𝟐𝟐

𝑹𝑹𝑭𝑭𝑭𝑭,𝑵𝑵𝟑𝟑

𝑹𝑹𝑵𝑵𝟏𝟏𝑵𝑵𝟐𝟐
𝑹𝑹𝑵𝑵𝟏𝟏𝑵𝑵𝟑𝟑
𝑹𝑹𝑵𝑵𝟐𝟐𝑵𝑵𝟑𝟑

𝒘𝒘𝑭𝑭𝑭𝑭 = 𝑴𝑴𝑴𝑴 𝒅𝒅𝑭𝑭𝑭𝑭
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A neural network is used to implicitly learn the FN weights for warm dense hydrogen 
at 1.0 g/cm3 and at temperatures between 10 and 150 kK.

# hidden layers (HL)= 1
# nodes in HL = 40
Activation function= ReLu

V. V. Karasiev, et al, Comput. Phys. Comm. 185, 3240, 2014. D. Mejia-Rodriguez  and S. B. Trickey, Phys. Rev. A 96, 052512 (2017). K. Luo, et al, Phys. Rev. B 101, 075116 (2020). R. P. Feynman, et al, Phys. Rev. 75, 1561 (1949). 

𝑪𝑪 =
𝟏𝟏
𝟐𝟐𝑵𝑵𝒔𝒔

�
𝒊𝒊

𝑵𝑵𝒔𝒔

∆𝑭𝑭𝒊𝒊
𝒓𝒓𝒓𝒓𝒓𝒓 − ∆𝑭𝑭𝒊𝒊𝑴𝑴𝑴𝑴

𝟐𝟐
+ 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 −𝜶𝜶 ∆𝑭𝑭𝒊𝒊𝑴𝑴𝑴𝑴

Technical parameters:

𝒅𝒅𝑭𝑭𝑭𝑭 𝒘𝒘𝑭𝑭𝑭𝑭 Cost:

KS OF

OF-MD

Domain of ion configurations:

𝑭𝑭𝑺𝑺:    LKTF𝛾𝛾TF 𝑬𝑬𝑿𝑿𝑿𝑿:  SCAN-L

• At each temperature considered a test and master training set 
are constructed.

Number of local configurations:

Test: 2000
Master Training:10000

Ensemble
(15 models) 

Training: 5800
Validation: 2500
Pseudo-test: 1700

Randomly 
sampled 
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Results of the force correction model on the test set at 90 kK show significant 
improvement over the underlying orbital-free ionic forces.

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 = 𝒂𝒂𝒂𝒂𝒂𝒂
𝑭𝑭𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 − 𝑭𝑭𝑲𝑲𝑲𝑲

𝑭𝑭𝑲𝑲𝑲𝑲
𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝑭𝑭𝑴𝑴𝑴𝑴−𝑲𝑲𝑲𝑲 = 𝑭𝑭𝑶𝑶𝑶𝑶 + ∆𝑭𝑭𝑴𝑴𝑴𝑴

T = 90 kK

1 Ry/bohr = 25.711 eV/Å
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Correlations between the orbital-free and Kohn-Sham energy are used to obtain the 
energy from the force correction model during molecular dynamic simulations.

Reference energies Distributions from MD

Similarly, a linear correlation between the orbital-free and Kohn-Sham electronic 
pressure exists for a given snapshot. 

T = 60 kK

1 Ry = 13.606 eV
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The average electronic energy and pressure from molecular dynamic with the force 
correction model are an improvement over those from orbital-free DFT. 

Error in predicted energy Error in predicted pressure

Errors in the electronic energy and pressure are consistently below 1 and 2 % 
respectively down to 10 kK. 
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Transferability tests indicate a trained model will have a limited temperature range 
of applicability. 

• All model up to this point have been constructed with 
reference data obtained at a single temperature.

• The force correction model trained at 90 kK is applied 
to a test set generated at 60 kK

At present, current schemes of descriptors do not contain all relevant information needed to 
construct a single model from wide ranging reference data in the warm dens matter regime.

• Loss in model accuracy can be attributed to the ionic 
forces being temperature dependent.

1 Ry/bohr = 25.711 eV/Å
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