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O C-E:'f:‘n O Summary &

O

FLASH has undergone a lot of new code development to be able to simulate Z-pinches and other problems with
non-ideal MHD physics — a new release of the code is coming in the near future.

J Ideal EOS SZP model comparisons between FLASH and MACH2 match well, but diverge when we use EOS,
ionization, and opacity tables: MACHZ2 uses SESAME while FLASH uses PROPACEOS.
o CR > 100 and Tion > 10 keV are achieved in FLASH

J FLASH has newer anisotropic transport coefficients which have a relatively small effect on the 1D results.

(J Discrepancies between single-group (Gray radiation) and multi-group are large = Gray radiation underestimates
radiation losses.



@ @]
5 —'ﬁé‘! A very brief introduction to the Staged Z-Pinch (SZP) 11

C E T E

Zz
)

J There are several configurations in the literature. In this talk, we present results for a configuration similar to

what has been referred to as SZP1 (a Xe gas-puff liner).
o For details on SZP2 (solid Ag liner), see Fernando Garcia-Rubio’s talk: Wed. NO04.00013

Target
Liner (Fuel) 1 A key feature of every SZP configuration is the use of a high

atomic number liner.

(d Hypothesis is that this setup provides shock pre-heating to

==
J,x By the target, and improved magnetized thermal insulation
— and stability to the target/liner interface.
B, (d We are also actively investigating other SZP configurationx

that use solid liners.

Vacuum

Ruskov+ (Phys. Plasmas 2020)
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(J New code development includes an implicit solver for anisotropic magnetic resistive diffusion, updated transport
coefficients (Davies, et al. 2020), and a circuit model for the Z Machine (McBride, et al. 2010).

d Thermoelectric effects (e.g., Nernst) have also been implemented but have not been included in SZP studies yet.

(d On the left is the load current profile from the circuit model; FLASH and MACH2 match perfectly, and on the right
is a quick example of a pinching B-field from a FLASH simulation with the circuit model.

FLASH Vi=0 lload Time=0s ]

MACH2 Vi=O lload - - - | | S PE
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26 Simplified models used ideal EOS and dynamics between JEigll
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N m . (%)
CENTER FLASH and MACH2 matched fairly well A 24
A spitzer_ideal_norad_3
. . . . 10° XeDT_1D_vac_spitz_no-rad_24
O Also used current input from a file (not a circuit model) 25—
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J We now typically use slightly different initial conditions and temperature floors and ceilings to keep time steps
reasonable and conditions within ranges of EOS tables
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S$ZP1 models (we refer to this new setup as SZP1%) A 24
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J DT fuel: 3.5 mg/cm?3 Gaussian peak, 0.5 eV
o PROPACEOS t=0ns

. 1.0e-02 ¢
o No temperature floor or ceiling s
o Spitzer resistivity and thermal conductivity . i
(¢p]
d Xe liner: 3.5 mg/cm?3 Gaussian peak, 0.5 eV = : Xe liner
o PROPACEOS = [
o No temperature floor or ceiling @ 1.0e-04 ¢
o Spitzer resistivity and thermal conductivity 8 g =
) B -
-
J Xe “vacuum”: <=3.25x 10° g/cm3, 0.5 eV CECG 1.0e-05 [ S
o PROPACEOS >
o Temperature forced to remain constant at 0.5 eV
L 5 1.0e-06 ' : ' '
o Constant resistivity 1.e11 cm?/s 0 0.5 1 15

N

Radius (cm)
MACH2 uses SESAME, which leads to

discrepant code-to-code comparison.
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toag = 145 NS vs. 145.47 ns
CR =357 vs. 44.4
peak T, ., = 3.34 keV vs. 5.47 keV

MACH2 - - -

10000 g current 25
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3 | 2
3 a
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T 100 o
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10 0
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Time (ns)

Discrepancy comes from the fact that the two codes currently
have to use different tables for EOS, ionization, and opacities.
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FLASH t=145.00 ns

NG Single-group SZP1* simulations show similar dynamics
between FLASH and MACH2, different stagnation
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NG To understand the physics just before stagnation, one &gl

HE EmD S N ] )
CENTER must look at high-frequency output A4
 Peak T; > 40 keV occurs ~ 275 ps 100000 -Me=144.300 ns P T; I: imhdakd
before stagnation :
; |
3 1 e
 After peak T; thermal losses o 10000+
become greater than . f
compressional heating = '
& 1000+
[ Density increases to > 10 g/cm3 ‘8‘
until fuel finally stagnates > :
8 100 _—
o ]
-
v
10 . — S
1 10 100

radius (um)



NNGLE Using newer transport coefficients has a relatively minor  JEZId]
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CENTER effect on the FLASH results A4
| tstag =145 ns vs. 145 ns Spitzer t = 145.00 ns
D CR = 357 vs. 454 :DaV|esWeEnlt= 145.00 ns
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tyag = 145 Ns vs. 144.905 ns
CR = 454 vs. 625
peak T, ., = 3.61 keV vs. 2.24 keV
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Results suggest that single-group radiation

underestimates radiation losses.
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40-group SZP1* results are slightly different from the
single-group (Gray radiation) case
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H BN B Shock pre-heating is key to reaching high temperatures 'gGy"

C ENTER

(A strong shock is responsible for the jump in temperature 10° e
at the onset of fuel compression CR4/3//
1 Group i
10* 40 Group
[ Fuel then undergoes adiabatic compression (Ti ~ CR%3)
S
o
~1000
. . . . o
J Thermal losses begin to limit the temperature increase =
from thermal compression near CR ~ 20 :%’
o 100
é —— shock pre-heating
J After peak temperature, compression continues and
thermal losses dominate until and after stagnation 10
11 5 10 50 100 500
These high CR’s > 100 are likely to be CR

unstable experimentally = need 2D sims.




NG E Future Work: 2D simulations (and eventually 3D) will be  JEigl
B used to study effects from instabilities A\ 4
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(A hypothesis put forth by MIFTI is that while the outer 1.25
liner/vacuum interface shows MRT instabilities, the inner
fuel/liner interface remains stable. We can now test this with
FLASH for various SZP configurations.
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FLASH has undergone a lot of new code development to be able to simulate Z-pinches and other problems with
non-ideal MHD physics — a new release of the code is coming in the near future.

J Ideal EOS SZP model comparisons between FLASH and MACH2 match well, but diverge when we use EOS,
ionization, and opacity tables: MACHZ2 uses SESAME while FLASH uses PROPACEOS.
o CR > 100 and Tion > 10 keV are achieved in FLASH

J FLASH has newer anisotropic transport coefficients which have a relatively small effect on the 1D results.

(J Discrepancies between single-group (Gray radiation) and multi-group are large = Gray radiation underestimates
radiation losses.
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