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Summary

• New broadband laser technologies are predicted to mitigate the deleterious effects of 

laser–plasma interaction (LPI), significantly (∼ 𝟑 ×) increasing ablation pressures and 

opening up design parameter space for achieving high yields (>100 MJ) with laser-direct 

drive LDD at moderate laser energies* (𝑬𝑳 ∼ 𝟏 MJ)

• Including additional ablation-pressure enhancement strategies such as beam zooming 

and early-time laser intensity increase allows high-gain designs to increase the fuel 

adiabat to 𝜶 ∼ 𝟑 at 𝑬𝐋 ∼ 𝟏 MJ

• LPI mitigation strategies, achievable ablation pressures, and physics of high-yield designs 

must be demonstrated on a sub-scale broadband implosion facility**

Mitigating laser–plasma interaction losses and increasing drive pressure 

are key elements in achieving 100s-MJ yields in ICF implosions

* W. Trickey, Uo04:13
** J. Marozas, CO04:15, next talk

P.W. McKenty, JO04:14
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High-yield (>100 MJ) designs require an igniting hot spot and 

efficient shell confinement for burn propagation

Igniting 

hot spot 𝑹𝐡𝐬

Ignition parameter

Scaling laws

𝑷𝐡𝐬𝑹𝐡𝐬 ∼
𝒑𝐚

𝟏
𝟑𝒗

𝐢𝐦𝐩

𝟏𝟎
𝟑

𝜶

𝜶
𝟏
𝟓

𝒑𝐚

𝟏
𝟏𝟓

𝑬𝑳
𝒗𝐢𝐦𝐩𝑰

𝟏
𝟑

> 𝑷𝑹 𝐦𝐢𝐧

𝒗𝐦𝐢𝐧 ∼
𝜶𝟎.𝟑

𝒑𝐚
𝟎.𝟏

𝑰

𝑬𝐋

𝟎.𝟏

𝑷𝐡𝐬𝑹𝐡𝐬 > 𝟏 Gbar × cm, 𝑻𝐢 > 4.5 keV

𝜶 = 𝟏

𝟑

𝟐

𝟑𝟎𝟎𝐌𝐁𝐚𝐫

𝒑𝐚 = 𝟏𝟎𝟎𝐌𝐁𝐚𝐫

Shell velocity required for an igniting hot spot

𝑰 = 𝟏𝟎𝟏𝟓𝐖/𝐜𝐦𝟐
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High-yield designs require an igniting hot spot and efficient 

shell confinement for burn propagation

Shell confinement is limited to 

return shock propagation time

Τ𝑀shocked 𝑀DT ∼ 𝑣
imp

4
3 𝛼−

2
5𝑝a

−
13
15 < 0.5 →

𝒗𝐦𝐚𝐱 ∼ 𝜶𝟎.𝟑𝒑𝐚
𝟎.𝟔𝟓

The return shock must be inside the shell at ignition:
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High-yield designs require an igniting hot spot and efficient 

shell confinement for burn propagation
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The return shock must be inside the shell at ignition:

𝜶𝟎.𝟑

𝒑𝐚
𝟎.𝟏

𝑰

𝑬𝐋

𝟎.𝟏

< 𝒗𝒊𝒎𝒑 < 𝜶𝟎.𝟑𝒑𝐚
𝟎.𝟔𝟓To form

hot spot

For efficient 

burn

𝒗𝐦𝐚𝐱 (shell confinement)

𝒗𝐦𝐢𝐧 (igniting hot spot)

𝜶 = 𝟑, 𝑰𝐋 = 𝟏𝟎𝟏𝟓 W/cm2 𝒑𝐚 = 𝟏𝟎𝟎𝐌𝐁𝐚𝐫

No 

efficient 

burn
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Ablation pressure in current LDD experiments is limited by laser–

plasma instabilities, mainly cross-beam energy transfer (CBET)

Direct drive, 𝝀𝐋 = 𝟑𝟓𝟏 nm
Bremsstrahlung absorption

Bremsstrahlung + CBET losses

Mitigation of CBET losses using broadband laser 

technology is the main focus of the direct-drive 

program.
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Mitigating CBET losses creates conditions for 𝒀𝒏 ∼ 𝟏𝟎𝟎MJ 

at 𝜶 ∼ 𝟏 and 𝑬𝐋 ∼ 𝟏 MJ

𝑌 ∼ 𝑓burn𝑀DT

Burn fraction depends on 𝝆𝑹
𝑴𝐃𝐓

𝒗𝐢𝐦𝐩

𝒕𝐚𝐜𝐜𝐞𝐥
∼ 𝒑𝐚𝑹𝐬𝐡𝐞𝐥𝐥

𝟐 → 𝑴𝐃𝐓 ∼
𝒑𝐚
𝒗𝐢𝐦𝐩

𝑬𝐋
𝑰

Rocket 

equation:

Adiabat (𝜶)

𝒗𝐢𝐦𝐩

𝒗𝐢𝐦𝐩 𝜶=𝟏

𝑴𝐃𝐓

𝑴𝐃𝐓 𝜶=𝟏

𝒇𝐛𝐮𝐫𝐧𝑴𝐃𝐓

𝒇𝐛𝐮𝐫𝐧𝑴𝐃𝐓 𝜶=𝟏

𝑬𝐋 = 𝟏𝐌𝐉

𝒑𝐚 = 𝟐𝟐𝟎𝐌𝐁𝐚𝐫, 𝑰 = 𝟏𝟎𝟏𝟓 W/cm2

𝒀
𝐧

(M
J
)

Laser energy (MJ)

1-D

≃ 𝟑-D

𝜶 = 𝟏

𝟑

𝟐

Formation of an igniting hot spot at higher 

adiabat requires larger 𝒗𝒊𝒎𝒑 → smaller 𝑴𝑫𝑻
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Can the laser energy of 𝜶 = 𝟑 design be reduced? 

Formation of an igniting hot spot at higher 

adiabat requires larger 𝒗𝒊𝒎𝒑 → smaller 𝑴𝑫𝑻
𝒑𝐚 = 𝟐𝟐𝟎𝐌𝐁𝐚𝐫, 𝑰 = 𝟏𝟎𝟏𝟓 W/cm2
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Increasing ablation pressures improves hydrodynamic stability and 

reduces the laser energy required for high yields

𝑴𝐃𝐓 ∼
𝒑𝐚
𝒗𝐢𝐦𝐩

𝑬𝐋
𝑰

Maximize target yield Increase fuel mass

Strategy for increasing 𝑴𝐃𝐓:

• Reduce laser intensity

- Limitations:

• reduction in 𝑣imp required for efficient confinement 

𝑣max ∼ 𝛼0.3𝑝a
0.65

• higher IFAR 𝑅 ∼ 𝐼−
1

3

• Increase ablation pressure

- Several options:

• zooming (laser focal spot reduction through an 

implosion, 𝐶p is higher)

• increased 𝐼 early in the pulse
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Increasing ablation pressures improves hydrodynamic stability and 

reduces the laser energy required for high yields

𝑴𝐃𝐓 ∼
𝒑𝐚
𝒗𝐢𝐦𝐩

𝑬𝐋
𝑰

Maximize target yield Increase fuel mass

Strategy for increasing 𝑴𝐃𝐓:

• Reduce laser intensity

- Limitations:

• reduction in 𝒗𝐢𝐦𝐩 required for efficient confinement 

𝒗𝐦𝐚𝐱 ∼ 𝜶𝟎.𝟑𝒑𝐚
𝟎.𝟔𝟓

𝒑𝐚 ∼ 𝑪𝐩 𝑰
𝒏, 𝒏 = 𝟎. 𝟕 − 𝟎. 𝟖 → 𝑴𝐃𝐓 ∼ 𝑰−𝟎.𝟐𝟓

Depends on beam size, 

ablator material

Distance (𝝁m)

density

pressure

Higher 

intensity

Lower 

intensity

𝑴𝒖𝒏𝒔𝒉𝒐𝒄𝒌𝒆𝒅

Τ𝑴𝒔𝒉𝒐𝒄𝒌𝒆𝒅 𝑴𝑫𝑻 ∼ 𝒗
𝒊𝒎𝒑

𝟒
𝟑 𝜶−

𝟐
𝟓𝒑𝒂

−
𝟏𝟑
𝟏𝟓

Shock is closer to outer surface
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Increasing ablation pressures improves hydrodynamic stability and 

reduces the laser energy required for high yields

𝑴𝐃𝐓 ∼
𝒑𝐚
𝒗𝐢𝐦𝐩

𝑬𝐋
𝑰

Maximize target yield Increase fuel mass

Strategy for increasing 𝑴𝐃𝐓:

• Reduce laser intensity

- Limitations:

• reduction in 𝑣imp required for efficient confinement 

𝑣max ∼ 𝛼0.3𝑝a
0.65

• higher IFAR 𝑹 ∼ 𝑰−
𝟏

𝟑

𝒑𝐚 ∼ 𝑪𝐩 𝑰
𝒏, 𝒏 = 𝟎. 𝟕 − 𝟎. 𝟖 → 𝑴𝐃𝐓 ∼ 𝑰−𝟎.𝟐𝟓

Depends on beam size, 

ablator material

𝐌𝐢𝐧 𝒗𝐢𝐦𝐩 ∼
𝜶

𝟒
𝟏𝟓

𝒑𝐚

𝟒
𝟒𝟓

𝑰

𝑬𝐋

𝟏
𝟗

𝐈𝐅𝐀𝐑 ∼
𝑰

𝑬

𝟎.𝟐𝟐

𝒑𝐚
−𝟎.𝟓𝟖

𝐈𝐅𝐀𝐑 ∼
𝒗𝐢𝐦𝐩
𝟐

𝒑𝐚

𝟐
𝟓𝜶

𝟑
𝟓

Reduction in 𝑰 𝒂𝒏𝒅 𝒑𝒂
leads to higher IFAR

Minimum velocity 

for ignition
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Increasing ablation pressures improves hydrodynamic stability and 

reduces the laser energy required for high yields
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• higher IFAR 𝑅 ∼ 𝐼−
1

3

• Increase ablation pressure

- Several options:

• zooming (laser focal spot reduction through an 

implosion, 𝐶p is higher)

• increased 𝐼 early in the pulse 
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Increasing ablation pressure by zooming and early-time intensity increase allows 

𝜶 = 𝟑 LDD designs to achieve 𝒀𝐧 ≃ 𝟏𝟎𝟎 MJ at 𝑬𝐋 ∼ 𝟏MJ

Laser pulse (× 𝟑𝟎 TW)

Intensity (𝒏𝒄/𝟒) (× 𝟏𝟎𝟏𝟒 W/cm2)

𝑰𝑳𝒏/𝑻

Time (ns)

Time (ns)

𝑹
𝒏
𝒄/
𝟒
(𝝁

m
)

Zooming 1: Τ𝑹𝒃 𝑹𝒃𝟎 = 𝟎. 𝟓𝟓 Zooming 2: Τ𝑹𝒃 𝑹𝒃𝟎 = 𝟎. 𝟒

𝑹𝟎/𝑹𝒂𝒃𝒍

A
b

la
ti

o
n

 p
re

s
s
u

re
 (

M
b

a
r)

𝒀𝒏 = 𝟏𝟎𝟎MJ @ 𝑬𝑳 = 𝟏. 𝟖MJ

No zooming

time

𝒀𝒏 = 𝟏𝟎𝟎MJ @ 𝑬𝑳 = 𝟏. 𝟏MJ

𝜶 = 𝟑 design

2-stage zooming

𝑰𝒏𝒄/𝟒 = 𝟏𝟎𝟏𝟓 W/cm2

2 designs with the same 𝑴𝑫𝑻 and 𝒗𝒊𝒎𝒑

𝑰𝑭𝑨𝑹 = 𝟗

𝑰𝑭𝑨𝑹 = 𝟔
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Summary
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adiabat to 𝜶 ∼ 𝟑 at 𝑬𝐋 ∼ 𝟏 MJ
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are key elements in achieving 100s-MJ yields in ICF implosions
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P.W. McKenty, JO04:14


