Physics Requirements for High-Gain Inertial Fusion Target Designs

V. N. Goncharov University of Rochester Laboratory for Laser Energetics

ROCHESTER

64th Annual Meeting of the American Physical Society Division of Plasma Physics Spokane, WA 17–21 October 2022

Summary

Mitigating laser–plasma interaction losses and increasing drive pressure are key elements in achieving 100s-MJ yields in ICF implosions

- New broadband laser technologies are predicted to mitigate the deleterious effects of laser-plasma interaction (LPI), significantly ($\sim 3 \times$) increasing ablation pressures and opening up design parameter space for achieving high yields (>100 MJ) with laser-direct drive LDD at moderate laser energies* ($E_L \sim 1$ MJ)
- Including additional ablation-pressure enhancement strategies such as beam zooming and early-time laser intensity increase allows high-gain designs to increase the fuel adiabat to $\alpha \sim 3$ at $E_{\rm L} \sim 1$ MJ
- LPI mitigation strategies, achievable ablation pressures, and physics of high-yield designs must be demonstrated on a sub-scale broadband implosion facility^{**}

*W. Trickey, Uo04:13 **J. Marozas, CO04:15, next talk P.W. McKenty, JO04:14

W. Trickey, I. V. Igumenshchev, D. Cao, J. Marozas, T. J. B. Collins, P. W. McKenty, N. Shaffer, A. Pineau, R. K. Follett, C. Stoeckl, R. C. Shah, C. Dorrer, J. D. Zuegel, D. R. Harding, S. Fess, S. P. Regan, D. H. Froula, and C. Deeney

Laboratory for Laser Energetics

Y. Lawrence

Massachusetts Institute of Technology

S. Atzeni, L. Savino, and F. Barbato

Universita` di Roma "La Sapienza"

A. Colaïtis

Centre Lasers Intenses et Applications, Université de Bordeaux

High-yield (>100 MJ) designs require an *igniting hot spot* and efficient shell confinement for burn propagation

High-yield designs require an igniting hot spot and *efficient shell confinement* for burn propagation

The return shock must be inside the shell at ignition: $M_{\rm shocked}/M_{\rm DT} \sim v_{\rm imp}^{\frac{4}{3}} \alpha^{-\frac{2}{5}} p_{\rm a}^{-\frac{13}{15}} < 0.5 \rightarrow$ $v_{\rm max} \sim \alpha^{0.3} p_{\rm a}^{0.65}$

High-yield designs require an igniting hot spot and efficient shell confinement for burn propagation

High-yield designs require an igniting hot spot and efficient shell confinement for burn propagation

ROCHESTER

Ablation pressure in current LDD experiments is limited by laser– plasma instabilities, mainly cross-beam energy transfer (CBET)

Mitigating CBET losses creates conditions for $Y_n \sim 100$ MJ at $\alpha \sim 1$ and $E_{\rm L} \sim 1$ MJ

Mitigating CBET losses creates conditions for $Y_n \sim 100~\text{MJ}$ at $\alpha \sim 1$ and $E_{\rm L} \sim 1~\text{MJ}$

Can the laser energy of $\alpha = 3$ design be reduced?

Strategy for increasing $M_{\rm DT}$:

- Reduce laser intensity
 - Limitations:
 - reduction in $v_{\rm imp}$ required for efficient confinement $v_{\rm max} \sim \alpha^{0.3} p_{\rm a}^{-0.65}$
 - higher IFAR $\left(R \sim I^{-\frac{1}{3}}\right)$
- Increase ablation pressure
 - Several options:
 - zooming (laser focal spot reduction through an implosion, C_p is higher)
 - increased I early in the pulse

Strategy for increasing M_{DT} :

- Reduce laser intensity
 - Limitations:
 - reduction in v_{imp} required for efficient confinement $v_{max} \sim \alpha^{0.3} p_a^{0.65}$
 - higher IFAR $\left(R \sim I^{-\frac{1}{3}}\right)$
- Increase ablation pressure
 - Several options:
 - zooming (laser focal spot reduction through an implosion, C_p is higher)
 - increased I early in the pulse

Increasing ablation pressure by zooming and early-time intensity increase allows $\alpha = 3$ LDD designs to achieve $Y_n \simeq 100$ MJ at $E_L \sim 1$ MJ

Summary

Mitigating laser–plasma interaction losses and increasing drive pressure are key elements in achieving 100s-MJ yields in ICF implosions

- New broadband laser technologies are predicted to mitigate the deleterious effects of laser–plasma interaction (LPI), significantly ($\sim 3 \times$) increasing ablation pressures and opening up design parameter space for achieving high yields (>100 MJ) with laser-direct drive LDD at moderate laser energies* ($E_L \sim 1$ MJ)
- Including additional ablation-pressure enhancement strategies such as beam zooming and early-time laser intensity increase allows high-gain designs to increase the fuel adiabat to $\alpha \sim 3$ at $E_{\rm L} \sim 1$ MJ
- LPI mitigation strategies, achievable ablation pressures, and physics of high-yield designs must be demonstrated on a sub-scale broadband implosion facility^{**}

*W. Trickey, Uo04:13 **J. Marozas, CO04:15, next talk P.W. McKenty, JO04:14

