The Scattering Interactions of Neutrons with ⁶Li and ⁷Li at Incident Neutron **Energies of 14 MeV Using an Inertial Confinement Fusion Platform**

C. J. Forrest **University of Rochester Laboratory for Laser Energetics** 64th Annual Meeting of the American Physical **Society Division of Plasma Physics** Spokane, WA October 17–21 2022

*TBR: tritium breeding ratio

Summary

Discrepancies between measured spectra from the neutron-induced scattering reactions and theoretical calculations still exist for lithium isotopes

- Lithium isotopes are one of the primary components being proposed for DT fusion reactor liners for the breeding of tritium from ${}^{6}Li(n,t)\alpha$ and ${}^{7}Li(n,n')t\alpha$ reaction channels^{*}
 - the amount tritium required for commercial applications of fusion reactors for energy generation does not occur in nature
- Knowledge of the particle production cross sections from interactions of 14-MeV neutrons in thick targets is required for simulations of neutronics and the tritium breeding rates
- A platform to measure the neutron-induced scattering reactions between light-Z nuclei has been developed at the OMEGA Laser System

The bright neutron source available on the OMEGA laser makes this an important instrument to measure neutron-induced breakup reactions of light-Z nuclei in the near 0° emission angle.

M. Rubel et al., Fusion Eng. Des. 136, 579 (2018).

J. P. Knauer¹, W. U. Schroeder², V. Yu. Glebov¹, K.L. Marshall¹, P. B. Radha¹, S. P. Regan¹, T. C. Sangster¹, A. Schwemmlein¹, and C. Stoeckl¹

> ¹University of Rochester Laboratory for Laser Energetics ²University of Rochester Departments of Chemistry and Physics

> > G. Hale and M. Paris

Los Alamos National Laboratory

B. Appelbe and A. Crilly

Imperial College

Breeding Tritium from a Lithium Blanket

Natural lithium as breeder material will not lead to a tritium breeding rate large enough for a reactor to sustain self-sufficiency

The only possible solution is increasing the content of ⁶Li(%) to a level required to achieve a tritium-breeding ration (TBR > 1).

channel available in the literature vary significantly.

Inelastic Scattering ^{6,7}Li – Motivation

Experiments to study neutron-induced breakup reactions are required since past measurements show significant differences

- Lithium-7
- Earlier experimental data as compared to the available ٠ evaluated nuclear data (JENDL) show a large disagreement below the second inelastic excited state.
- Enhancement in the lower-energy region is believed to be ٠ caused by the excitation of higher energy states that have not been fully resolved.
- There is no available experimental data that measured the • cross section below 30° with 14-MeV neutrons.
 - the experimental platform on OMEGA has been shown to make successful measurements near 0°. **
 - Experimental data from both ⁶Li and ⁷Li will be presented for completeness.

* S. Chiba et al., J. Nucl. Sci. Technol. 22, 771 (1985). ** C. J. Forrest et al., Phys. Rev. C. 100, 034001 (2019).

Inertial Confinement Facility (ICF) – High Yield Neutron Beam

A high-yield neutron source is achieved with ICF lasers that create pressures of ~100 Gbar and plasma temperatures up to 100 keV

Reaction products from the "hot spot"

> *P* ~ 100 Gbar $\rho R: 250 \text{ mg/cm}^2$ $T_{\rm i}$: 30 keV ($E_{\rm CM} \sim 100 \, \rm keV$)

Experimental Setup

A novel approach to measure the neutron-induced scattering reactions between light-Z nuclei has been developed at the OMEGA Laser Facility.

The vessel is located as close as possible to the implosion, maximizing • the solid angle without interfering with the laser pulses required for illuminating the DT implosion target.

> The experimental time-of-flight data are post-processed to achieve a "modelindependent" energy spectrum of the inelastic scattering contributions.*

Ø.365

* C. J. Forrest et al., Rev Sci. Instrum. 93 .(2022).

7

Inelastic Scattering ⁷Li – Experimental Data

A trial function was used to evaluate the scattering cross sections from the different reaction channels*

$$1st$$

$$\frac{d^2\sigma}{d\Omega dE'}(E_{in},\theta,E') = \sum_{i=1}^n A_i \exp(-\frac{(E'-E_i)^2}{\sigma_i^2}) + A_{n+1}$$

1st Term: The discrete energy levels from the scattered neutrons.

2nd Term: The three-body phase space distribution for ⁶Li(n,n')d α and ⁷Li(n,n')t α reaction channels.

3rd Term: The evaporation term for the n,2n reactions.

The 2nd term of this trial function does not capture the decrease in the signal above 8 MeV.

* S. Chiba et al., J. Nucl. Sci. Technol. 22, 771 (1985).

Experimental Results – ^{6,7}Li

ROCHESTER

The three-body breakup from ⁶Li(n,n')d α and ⁷Li(n,n')t α show good agreement with earlier measurements

The evaluated data (JENDL-3PR1) show a smaller cross-section at lower neutron emission angles for both ⁶Li and ⁷Li

First measurements with a neutron emission angle at $\theta_{lab} \sim 0^{\circ}$

Experimental Results – ^{6,7}Li

ROCHESTER

A significant deviation in the cross section at the near-zero neutron emission angle is observed for both ⁶Li and ⁷Li.

Only a single data set for (n,2n) cross sections with 14 MeV incident neutrons are available in the literature

Again, first measurements with a neutron emission angle at $\theta_{lab} \sim 0^{\circ}$

New Experimental Platform

An experimental platform to measure the emitted neutron with increasing angles is under development at the Omega Laser Facility

Experimental data in the lower energy region <4 MeV with increasing neutron emission angles (0° to 90°) is required to reduce the uncertainty in the TBR <3%.

This configuration will allow for less lithium since the neutron source will be much closer to the target sample.

Summary/Conclusion

Discrepancies between measured spectra from the neutron-induced scattering reactions and theoretical calculations still exist for lithium isotopes

- Lithium isotopes are one of the primary components being proposed for DT fusion reactor liners for the breeding of tritium from ${}^{6}Li(n,t)\alpha$ and ${}^{7}Li(n,n')t\alpha$ reaction channels^{*}
 - the amount tritium required for commercial applications of fusion reactors for energy generation does not occur in nature
- Knowledge of the particle production cross sections from interactions of 14-MeV neutrons in thick targets is required for simulations of neutronics and the tritium breeding rates
- A platform to measure the neutron-induced scattering reactions between light-Z nuclei has been developed at the OMEGA Laser System

The bright neutron source available on the OMEGA laser makes this an important instrument to measure neutron-induced breakup reactions of light-Z nuclei in the near 0° emission angle.

