Investigation of converging ultra-fast jets in cylindrical implosions:
A new platform to study complex hydrodynamic effects relevant to
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Abstract Target applications Preliminary results from FLASH simulations

We present the results of a computational study investigating an experimental | In this poster, we propose a modification of the cylindrical platform that extends | Two main feature geometries (or “spikes”) were used. One where the spike is a
platform that can furnish new insights on the stability of inertial confinement | the design to include features that act as surrogates to fill-tubes. The latter are | sharp absolute cosine function, and one sporting a Gaussian shape. The
fusion (ICF) implosions. This novel design concept puts particular emphasis on | expected to generate fast, implosive flows that are relevant to the fill-tube jetting | cylinders were perturbed with different mode numbers, varying the number of
the generation of very-high Mach number jets, which are similar to flows | problem. Controlling such implosive jets can help develop mitigation schemes | the spikes. We wanted to examine how the cylinder will implode, as well as the
observed in certain ICF target designs. The platform has been designed and | relevant to LANL’s ICF program. Additionally, this experimental platform will | jetting from these spikes, which act as radiatively-driven shaped charges. At the
modeled using the FLASH code,l'l a highly versatile, parallel, adaptive mesh help further validate FLASH and increase simulation fidelity when the code is | same time, we investigated filling the cavities with a tamp to time the
refinement, finite-volume Eulerian, radiation-magnetohydrodynamics code with | applied to model jetting phenomena pertinent to laboratory astrophysics and Type | emergence of the jet and its subsequent impact on the foam filler. Our
extended physics capabilities?l. A directly driven, open-ended cylindrical ablator | g supernovae.l®’ The concept will allow us to explore broadly the hydrodynamics | simulations with FLASH predict several interesting hydrodynamic effects in these
is manufactured with a series of caretully designed conical protrusions. These | needed to generate implosive jets,”! the properties of such jets (speed, coherence, | implosions:

jet-generating features give a high degree of control over the characteristics on | stability),['!l and survivability of a target with strong surface features. Generating | .
the inwardly propagating jet flows, their speed, collimation, etc., and the open | implosive HED jets by design has never been attempted before and while past

geometry of the cylinder gives us a clear window to observe the tlows over the | literature on converging flows exists,['? only few planar studies were done on Nova | .
entire implosion history. The behavior of this kind of converging flow, in the | at LLNL in the 1990’s.[12.14]

context of ICF, is still not well understood. This platform opens the possibility
of studying converging ultra-fast jet propagation over a large parameter space,
and it can be used to inform the design of ICF targets that may exhibit jetting | Framing
phenomena. camera

Motivation for the Jetted Cylindrical ICF platform \

The jets can achieve speeds many times the shell’s implosion velocity,
agreeing with the analytical approach by Birkhoff.[!]

The formation of these jets is very sensitive to initial conditions; timing their
impact to the foam core is not trivial.
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Inertial fusion aims to create very high densities and pressures in the core of a

tiny pellet containing DT tfuel. This is possible by uniformly driving the target Backlighter
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at high velocities and convergence ratios. Nevertheless, as the dimensions of the . : ) v 2.
, , , mid-Z ablator Edge shields seems to scale well :
pellet decrease, undesirable effects arise, such as the Rayleigh-Taylor and with the relation: g,
Richtmyer-Meshkov instabilities, due to surface perturbations amplitied by ' S
convergence. The geometry of the spherical pellet and additional features like Figure 2. 3-D illustrations showing and the main components of interest for the proposed A .vz’ £
the fill-tube - which allow the injection of the fuel inside the pellet — make extension to the cylindrical platform. Illustrations by Mike Franchot, LLE. J SIN (v g Beak <hell Disassembling
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diagnosing the implosion and instabilities challenging. Fill-tube-generated jets were o s the g ] velocity spike
that are launched into the hotspot are particularly deleterious and still poorly | The simulation setup with the FLASH code conical half-angle > 10 \
. . [4] . . - ]
understood for Spherlc.al SEOMH etries. Neyertheles.s, Cyllde‘ICil .platfojlj'ms call Preliminary full-physics FLASH calculations were done on a 2-D Cartesian of the spike.
emulate well spherical implosions and provide us with a direct “window” to look . . . . . L.
.. . 3 L. domain; a quadrant in the positive x- and y-axis. We geared our investigations
inside the compressing system.l’l So far, LANL has deployed such cylindrical . . . .
. . . 5 . towards geometries that can take advantage of symmetric boundary conditions to
platforms at OMEGA and NIF in relation to its ICF program.l’l To design and o . . . . S N A § N
; . . L. . . . minimize computational time for quick turnaround. All simulations featured a 0.01 002 003 004 005 006 007 008 009 0.10
interpret their laser-driven cylindrical implosions, LANL has been leveraging cylindrical cross-section illuminated with the laser pulse shapes employed in e o
the FLASH code, along with xRAGE Yl for predictive modeling and post-shot st}sfan dard evlindrical imolosions b -L ANL, at OMEGE The alﬁator n]i)atgrial . Figure 4. Velocity magnitude showing the jet (pink) and ablator (grey) around 8 ns, ie.,
analysis, as well as integrated verification and validation. y P y . prior to jet impact to the CH foam, and close to shock breakout).

aluminum with a standard foam fill.
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