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Summary

• Radiation trapping is most apparent in simulations through a characteristic Marshak 
waveform, where radiation and electron temperatures are equal (TR = Te), indicating 
atomic-radiative LTE

• The Marshak wave model describes radiation trapping in pusher layers in terms of 
useful characteristic quantities

• The classic Marshak wave model is extended to cylindrical and spherical geometries 
and to a uniformly compressing pusher layer, preserving its self-similar analytic form

Radiation trapping by an ICF pusher layer can be characterized 
in terms of a Marshak wave model

Volume-ignition capsule designs rely on radiation trapping.
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Pure-CH OMEGA-scale imploded shells do not trap radiation, while a 6 𝝁m 
Cu inner-pusher layer traps radiation, as seen in LILAC simulations

• High-yield shot 90288
• Radiation source r < 22 𝝁m
• Near-free escape of radiation 

through the DT shell

• 25 kJ, 2 ns square pulse
• TR = Te indicates optically thick LTE
• LTE and a Planck spectrum, are key 

Marshak wave assumptions
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The Marshak wave is based on a simple balance of electron thermal energy 
and radiative heating near local thermodynamic equilibrium (LTE)

The appearance of LTE, e.g., Te = TR , is a sign of “trapped” radiation.
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κP Bν T( )dν∫ ≡ κνBν T( )∫ dνThe Planck mean opacity 
kR does not appear:
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The constant-density planar Marshak wave problem has a self-similar 
temperature profile solution

The “constant-flux” approximation is accurate and gives a useful 
expression for pretty much every quantity of interest.
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Boundary conditions
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The Marshak wave model yields several useful characteristic quantities, 
particularly tt = 1, the formation time of a one-optical-thickness wave

• Optical thickness time scale: the time of formation of a tR = 1 trapping layer is the key time scale
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• The trapped flux FR and the trapped energy ER vary on this time scale

• The wavefront, defined as x = x0, decelerates
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Marshak wave “𝝉 = 1” formation times for Cu and Au are short relative
to the pusher hydro time, but far too long for a pure-CH shell

The “𝝉 = 1” formation time is a parameter that anticipates the 
effectiveness of radiation trapping in an imploding pusher layer.
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Marshak waves have very different g(x) = T/T0 profiles in planar, cylindrical, and 
spherical geometries, but nearly identical wavefronts
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• In cylindrical and spherical geometry, T0 is not a good 
fuel/pusher boundary condition parameter; it is fixed 
at a definite point in 𝝃, but not in space or time

• A better boundary condition is the total radiated 
power at or near 𝝃 = 0
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Marshak waves have the same trajectory and flux trapping parameter in all three 
geometries, all expressed in terms of the optical thickness formation time tt
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Summary/Conclusions

Radiation trapping by an ICF pusher layer can be characterized 
in terms of a Marshak wave model

• Radiation trapping is most apparent in simulations through a characteristic Marshak 
waveform, where radiation and electron temperatures are equal (TR = Te), indicating 
atomic-radiative LTE

• The Marshak wave model describes radiation trapping in pusher layers in terms of 
useful characteristic quantities

• The classic Marshak wave model is extended to cylindrical and spherical geometries 
and to a uniformly compressing pusher layer, preserving its self-similar analytic form

Volume-ignition capsule designs rely on radiation trapping.
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Fraley et al.* characterize radiation trapping in the pre-ignition DT sphere entirely 
in terms of a photon “mean-free-path”

• “The relative mean-free-path for photons (at the average photon 
energy) is [~0.017 the sphere radius], so inverse bremsstrahlung 
retards the photon loss from the microsphere, Te remains up, and 
the fuel ignites at at 3 keV.”

• Fraley conditions :  kRs/kPl = 0.0438 or lRoss/lPl = 22.9

Fiche #

*G. S. Fraley, E. J. Linnebur, R. J. Mason, and R. L. Morse, Phys. Fluids 17, 474-489, 1974.
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