Hot-Electron–Preheat Mitigation Using Silicon-Doped Layer Shells on OMEGA

University of Rochester Laboratory for Laser Energetics 64th Annual Meeting of the APS Division of Plasma Physics Spokane, WA 17–21 October 2022

Summary

OMEGA direct-drive experiments using targets with Si-doped CH ablators show a reduction in hot-electron preheat by a factor of 2 compared to pure-CH ablators

- Implosions of D₂-gas-filled targets with pure-CH shells were compared with the performance of mass-equivalent 6% Si-doped CH layer shells
 - tight-focused phase plates increase energy coupling and increase hot-electron production*
 - implosion adiabat was kept constant by adjusting the laser pulse shape to compensate for radiative preheat
- Hot-electron temperature, T_{hot} , and total hot-electron energy, E_{hot} , were inferred from the signal of an absolutely calibrated hard x-ray detector (HXRD)**,[†]
- Implosions with the Si-doped layer shells achieved higher areal densities and higher yields than the pure-CH shell implosions[‡]

- **C. Stoeckl et al., Rev. Sci. Instrum. 72, 1197 (2001).
- [†] A. Christopherson et al., Phys. Rev. Lett. <u>127</u>, 055001 (2021).

^{*} W. Theobald et al., Phys. Plasmas 29, 012705 (2022).

[‡] P. S. Farmakis *et al.*, CO04.00003, this conference.

Collaborators

D. Patel, W. Theobald, R. Betti, M. J. Rosenberg, A. A. Solodov, C. Stoeckl, and S. P. Regan University of Rochester Laboratory for Laser Energetics

J. Kunimune and J. A. Frenje Plasma Science and Fusion Center Massachusetts Institute of Technology

Tight-focused phase plates increase energy coupling and increase hot-electron production*,**

E30557

Tight-focused phase plates have a higher intensity at the quarter critical density and generate more hot-electron preheat than the SG5-850 phase plates.

**D. Cao et al., presented at the 61st Annual Meeting of the APS Division of Plasma Physics, Fort Lauderdale, FL, 21–25 October 2019 (NO5.00010).

^{*} W. Theobald *et al*., Phys. Plasmas <u>29</u>, 012705 (2022).

Experiments were performed using D₂-gas-filled pure-CH shells and mass-equivalent 6% Si-doped CH layer shells

The implosion adiabat was kept constant by adjusting the laser pulse shape to compensate for radiative preheat.

The hot electron temperature, T_{hot} , and total hot electron energy, E_{hot} , were inferred from the signal of an absolutely calibrated hard x-ray detector (HXRD)*

Si-doped CH targets produced fewer hard x-rays than pure-CH shells

Si-doped CH targets showed a factor of 2 lower HXR signal compared to pure CH targets at all intensities.

Hard x-ray measurements were used to infer hot-electron energy E_{hot}*,**

E30535

Current analysis assumes radiative power of CHSi equal to CH, which gives a conservative estimate of E_{hot} reduction.

^{*} C. Stoeckl et al., Rev. Sci. Instrum. <u>72</u>, 1197 (2001).

^{**}A. Christopherson et al., Phys. Rev. Lett. <u>127</u>, 055001 (2021).

[†] A. Christopherson, Ph.D. thesis, University of Rochester, 2020.
[‡] C. Stoeckl *et al.*, Rev. Sci. Instrum. <u>87</u>, 11E323 (2016).

The inferred E_{hot} is lower by a factor of 2 for Si-doped CH targets compared to pure-CH targets

 E_{hot} is reduced with Si-doped CH shells at all intensities, indicating the reduction of hot-electron preheat.

UR LLE

Implosions with the Si-doped layer shells achieved higher performance compared to the pure-CH shell implosions*

Areal density **Neutron yield** 90 5 • CH • CH • CHSi Neutron yield (×10¹⁰) • CHSi 80 4 ho R (mg/cm²) 70 3 þ 60 $\overline{\mathbf{\Phi}}$ 2 50 ₫ 3.5 4.5 3.5 4.0 4.0 4.5 Quarter-critical laser intensity (×10¹⁴ W/cm²) Quarter-critical laser intensity (×10¹⁴ W/cm²) E30559

*P. Farmakis et al., CO04.00003, this session.

Summary

OMEGA direct-drive experiments using targets with Si-doped CH ablators show a reduction in hot-electron preheat by a factor of 2 compared to pure-CH ablators

- Implosions of D₂-gas-filled targets with pure-CH shells were compared with the performance of mass-equivalent 6% Si-doped CH layer shells
 - tight-focused phase plates increase energy coupling and increase hot-electron production*
 - implosion adiabat was kept constant by adjusting the laser pulse shape to compensate for radiative preheat
- Hot-electron temperature, T_{hot} , and total hot-electron energy, E_{hot} , were inferred from the signal of an absolutely calibrated hard x-ray detector (HXRD)**,[†]
- Implosions with the Si-doped layer shells achieved higher areal densities and higher yields than the pure-CH shell implosions[‡]

A follow-up campaign with fully Si-doped CH shells is scheduled for FY23 to understand the individual contributions to the HXR signal from the corona and payload.

- **C. Stoeckl et al., Rev. Sci. Instrum. 72, 1197 (2001).
- [†] A. Christopherson et al., Phys. Rev. Lett. <u>127</u>, 055001 (2021).
- [‡] P. S. Farmakis et al., CO04.00003, this conference.

LLE

^{*} W. Theobald et al., Physics of Plasmas 29, 012705 (2022).

Back up slides

A follow up campaign is scheduled to get more accurate estimate of preheat reduction with CHSi ablators using single-layer Si-doped CH shells

A follow-up campaign with fully Si-doped CH shells is scheduled for FY23 to understand the individual contributions to the HXR signal from the corona and payload.

