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Summary

• A hot-electron scaling was obtained from PIC simulations as a function of laser-plasma 
conditions in the quarter-critical region

• Using this scaling and conditions from LILAC simulations, whole-pulse hot-electron 
generation can be predicted

• After taking potential inaccuracies in hydro and PIC simulations into account, our 
prediction agreed with the experimental hard X-ray data within experimental error bars

Hot-electron generation in OMEGA implosions can be predicted by combining 
PIC simulations and experimental data

____________
PIC: particle-in-cell
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Laser-plasma instabilities in the OMEGA experiments were shown to be 
dominated by two-plasmon decay (TPD)*

A predictive hot-electron capability is required for direct-drive inertial confinement fusion design.

Mode structure of TPD

k1,EPW
k2,EPW

k0,light

Time-resolved 𝝎𝝎/2 spectra**

𝜼𝜼 ≡
L𝝁𝝁m𝑰𝑰14

233Te,keV

____________
* A. Simon et al., Phys. Fluids 26, 3107 (1983).

** W. Seka et al., Phys. Rev. Lett. 112, 145001 (2014).

*

TPD spectra
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Previous efforts for hot-electron scaling focused on the dependency of 𝜂𝜂 *,**,†

fhot should be a combination of Te and 𝜼𝜼

Experimental fhot

Plasma conditions from LILAC ‡

** Shot
97759

____________
* C. Stoeckl et al., Phys. Rev. Lett. 90, 235002 (2003). 

** D. H. Froula et al., Phys. Rev. Lett. 108, 165003 (2012). 
† D. Turnbull et al., Phys. Plasmas 27, 102710 (2020). 
‡ J. Delettrez et al., Phys. Rev. A 36, 3926 (1987).
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86 simulations to scan 
laser-plasma conditions

We used 2-D OSIRIS simulations* to study hot-electron scaling

____________
*R. A. Fonseca et al., in Computational Science – ICCS 2002, edited by P. M. A. Sloot et al., Lecture Notes in Computer Science, Vol. 2331 (Springer, Berlin, 2002), p. 342.
B.C.: boundary condition
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100 < L𝝁𝝁m < 200

1.5 < Te,keV < 2.5

0.8 < Ti,keV < 1.2

1.5 ×1014 < IW/cm < 3.0 × 10152
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Smoothing by spectral dispersion (SSD)* induces intermittent speckles 
on a time scale of 3 ps

____________
*S. Skupsky et al., J. Appl. Phys. 66, 3456 (1989).

Laser Ey with SSD Ex energy and 𝒇𝒇𝒉𝒉𝒉𝒉𝒉𝒉

Bandwidth
360GHzBandwidth

360 GHz

0.25 nc

L = 150 𝝁𝝁m, I = 2.0 × 1014 W/cm2

Te = 2.5 keV, Ti = 1.5 keV
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The obtained scaling law depends on 𝜂𝜂 as well as Te

fhot
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Hot-electron energy and the measured charge can be predicted with Thot

____________
* D. Turnbull et al., Phys. Plasmas 27, 102710 (2020);

A. Christopherson, Ph.D thesis, University of Rochester, 2020.

Hot-electron 
temperature scaling

⁄𝐝𝐝𝑬𝑬𝐡𝐡𝐡𝐡𝐡𝐡 𝐝𝐝𝒉𝒉 = 𝟒𝟒𝛑𝛑𝛑𝛑 𝒉𝒉 𝟐𝟐𝑰𝑰𝟎𝟎 𝒉𝒉 𝑭𝑭𝐡𝐡𝐡𝐡𝐡𝐡 𝒉𝒉 ,

𝑬𝑬𝐡𝐡𝐡𝐡𝐡𝐡 = ⁄𝑸𝑸 −𝟏𝟏.𝟏𝟏𝟐𝟐 + 𝟎𝟎.𝟔𝟔𝟔𝟔𝑻𝑻𝐡𝐡𝐡𝐡𝐡𝐡 + 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝑻𝑻𝐡𝐡𝐡𝐡𝐡𝐡𝟐𝟐 ,∗
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LILAC laser intensity was modified by minimizing the relative 
error of the measured charge 

Predicted charge
from hot electrons

10%

–10%

, I0 is laser intensity from LILAC.𝑰𝑰∗ = 𝑰𝑰𝟎𝟎 � 𝒂𝒂𝟎𝟎 + �
𝒊𝒊=𝟏𝟏

𝟐𝟐

𝒂𝒂𝒊𝒊 � 𝑳𝑳𝒃𝒃𝒊𝒊 � 𝑻𝑻𝒆𝒆
𝒄𝒄𝒊𝒊 � 𝑻𝑻𝒊𝒊

𝒅𝒅𝒊𝒊 � 𝜼𝜼𝒆𝒆𝒊𝒊 � 𝒓𝒓𝒇𝒇𝒊𝒊 � �𝟏𝟏.𝟎𝟎 − 𝐡𝐡𝐭𝐭𝐭𝐭𝐡𝐡 �𝒈𝒈𝟎𝟎 +
𝐝𝐝𝒓𝒓
𝐝𝐝𝒉𝒉

𝒉𝒉𝟎𝟎 𝟐𝟐.𝟎𝟎
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The modified predictions of Ehot and Thot matched the data

Predicted hot-electron energy
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Predicted hot-electron temperature

9.4%

–9.4%
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Summary/Conclusions

Hot-electron generation in direct drive can be predicted by PIC simulations

• A hot-electron scaling was obtained from PIC simulations as a function of laser-plasma 
conditions in the quarter-critical region

• Using this scaling and conditions from LILAC simulations, whole-pulse hot-electron 
generation can be predicted

• After taking potential inaccuracies in hydro and PIC simulations into account, our 
prediction agreed with the experimental hard X-ray data within experimental error bars

____________
PIC: particle-in-cell
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