Understanding Cryogenic Target Modeling Gaps on OMEGA Using Statistics-Based Analysis with a 2-D DRACO Simulation Database

1.0 <u>le15</u> ...including Adding 1D beam and target statistical model implosion modes & full to predict SSD imprint experiment 0.8 Predicted Neutron Yield model (*ℓ*≤50) Y_{1D, sim} 0.6 Y_{2D, sim} 0.4 V=X 0.2 0.0 2 1e14 1e14 1e14 **Measured Neutron Yield**

Duc Cao University of Rochester Laboratory for Laser Energetics 64st Annual Meeting of the American Physical Society Division of Plasma Physics Spokane, WA 17–21 October 2022

Understanding Cryogenic Target Modeling Gaps on OMEGA Using Statistics-Based Analysis with a 2-D DRACO Simulation Database

Duc Cao University of Rochester Laboratory for Laser Energetics 64st Annual Meeting of the American Physical Society Division of Plasma Physics Spokane, WA 17–21 October 2022

Summary

Statistical modeling with multiple observables is being used to help guide code improvements

- Statistical modeling has made successful predictions^{1,2} while also revealing the dependencies of missing physics
- Statistical modeling with the DRACO-2D database³⁻⁶ verifies improved yield predictions when known
 perturbations are added to codes
- When adding hypothesized perturbations, repeating the above exercise on multiple observables (e.g. yield, X-ray hotspot size) can help reveal which implementations are most physical

- ⁴ J. Marozas, Phys. Plasmas 25, 056314 (2018);
- ⁵ D. Cao, Phys. Plasmas 22, 082308 (2015)

¹A. Lees et al., Phys. Rev. Lett. 127, 105001 (2021),

² V. Gopalaswamy et al., Nature volume 565, pages 581–586 (2019).

³ P. B. Radha et al., Physics of Plasmas 12, 056307 (2005)

⁶ With support from the ASCR Leadership Computing Challenge Program

Collaborators

R. C. Shah, C. A. Thomas, A. Lees, V. Gopalaswamy, R. Betti, D. Patel, W. Theobald, J. P. Knauer, P. B. Radha, C. Stoeckl, S. P. Regan, W. Scullin, T. J. B. Collins, and V. N. Goncharov

> University of Rochester Laboratory for Laser Energetics

Motivation: Building on LLE's statistical modeling success, we want to also use it to improve codes

Statistical model efforts have done a great job at building predictive capability on OMEGA from imperfect 1D simulations¹⁻⁴

• For codes, the statistical model could also be usable to guide improvements

Improving code predictability is crucial for predicting performance at multi-MJ laser facilities

¹ V. Gopalaswamy et al., Nature volume 565, pages 581–586 (2019)

- ² A. Lees et al., Phys. Rev. Lett. <u>127</u>, 105001 (2021),
- ³ V. Gopalaswamy, CO04:6 (this conference) ⁴ C. Williams, NI02:4 (this conference)

Statistical modeling parameterizes observed modeling gaps reasonably well and can hint at the nature of what's missing (previously done for 1D^{1,2})

Known effects not captured in 1D codes were simulated in a DRACO 2D database to show their impact at reducing the modeling gap

Known effects not captured in 1D codes were simulated in a DRACO 2D database to show their impact at reducing the modeling gap

Known effects not captured in 1D codes were simulated in a DRACO 2D database to show their impact at reducing the modeling gap

We can try further, informed modeling changes to see what could reduce the modeling gap even further and improve code predictive capability

Example study: Reduced SSD bandwidth imprint model (mimics potentially uncaptured short-scale perturbations)

We can try further, informed modeling changes to see what could reduce the modeling gap even further and improve code predictive capability

Example study: Reduced SSD bandwidth imprint model (mimics potentially uncaptured short-scale perturbations)

We've recently added X-ray image analysis^{1,2} to further constrain possible improvements to the code

Example study: Reduced SSD imprint model (mimics more short-scale perturbations that could be uncaptured)

F. Marshall, Review of Scientific Instruments 68, 735 (1997)
 J. Macfarlene, High Energy Density Phys., Vol. 3, pp. 181-190 (2007)

We've recently added X-ray image analysis^{1,2} to further constrain possible improvements to the code

Example study: Reduced SSD imprint model (mimics more short-scale perturbations that could be uncaptured)

We are studying the effects of other perturbations that could improve code predictions

Summary

Statistical modeling with multiple observables is being used to help guide code improvements

- Statistical modeling has made successful predictions^{1,2} while also revealing the dependencies of missing physics
- Statistical modeling with the DRACO-2D database³⁻⁶ verifies improved yield predictions when known
 perturbations are added to codes
- When adding hypothesized perturbations, repeating the above exercise on multiple observables (e.g. yield, X-ray hotspot size) can help reveal which implementations are most physical

- ⁴ J. Marozas, Phys. Plasmas 25, 056314 (2018);
- ⁵ D. Cao, Phys. Plasmas 22, 082308 (2015)

¹A. Lees et al., Phys. Rev. Lett. 127, 105001 (2021),

² V. Gopalaswamy et al., Nature volume 565, pages 581–586 (2019).

³ P. B. Radha et al., Physics of Plasmas 12, 056307 (2005)

⁶ With support from the ASCR Leadership Computing Challenge Program