High-Power, High-Energy Laser-Solid THz Generation with Varied Target Geometry

Gerrit Bruhaug PhD Student, Mechanical Engineering University of Rochester Laboratory for Laser Energetics

APS DPP Spokane, WA 19/10/2022

Summary

High-Power, High Energy (HPHE) THz pulses were generated with a wide variety of targets on both the OMEGA EP and MTW lasers

Collaborators

H. Rinderknecht, E. Smith, M. Signor, M. Wei, D. Bishel, G. W. Collins, J. R. Rygg Laboratory for Laser Energetics

Y. E, K. Garriga, X.C. Zhang University of Rochester Institute of Optics

> R. Smith, A. Necas, K. Zhai TAE Technologies

THz radiation is difficult to efficiently generate and detect due to its odd position in the electromagnetic spectrum

Motivation

High-Power, High-Energy THz pulses are useful scientific tools as both experimental pumps and probes of materials

- ≤1 psec THz pulses act as a source of strong (> 1 MV/cm) quasi-DC electric fields on targets
- HPHE THz pulses have been used to study non-linear carrier dynamics in materials (pump and/or probe)*
 - Can be used to constrain EXAFS
- The next frontier: the interaction of super intense $(a_0 \ge 1)$ THz pulses with matter
 - THz tunneling ionization^{**}, MeV scale particle generation[†]
- HPHE THz is a potential diagnostic tool for MFE plasmas
 - Requires ~50 mJ, >1 THz pulses
 - See poster TP11.00016 from A. Necas and poster TP11.00019 from R. Smith for more

* Hafez, H. A., Chai, X., Ibrahim, A., Mondal, S., Férachou, D., Ropagnol, X., & Ozaki, T. (2016). Intense terahertz radiation and their applications. *Journal of Optics (United Kingdom)*, 18(9). https://doi.org/10.1088/2040-8978/18/9/093004 ** K. Y. Kim. (2015). Strong terahertz field generation, detection, and application.

[†] Salén, P., Basini, M., Bonetti, S., Hebling, J., Krasilnikov, M., Nikitin, A. Y., Shamuilov, G., Tibai, Z., Zhaunerchyk, V., & Goryashko, V.

(2019). Matter manipulation with extreme terahertz light: Progress in the enabling THz technology. *Physics Reports*, 836–837, 1–74. https://doi.org/10.1016/j.physrep.2019.09.002

ROCHESTER

Laser-solid-plasmas generate THz radiation in a variety of ways depending on laser intensity and target design

** G. Liao, et al, "THz pulses over 50 millijoules generated from relativistic picosecond laser-plasma interactions", PNAS March 5, 2019 116 (10) 3994-3999

[†] Zeng, Y., et al., Guiding and emission of milijoule single-cycle THz pulse from laser-driven wire-like targets. Optics Express, 28(10), 15258. (2020)., https://doi.org/10.1364/oe.390764

Previous record HPHE THz experiments generated ~50 mJ of THz using a ~60 J laser and foil targets

- More recent work has shown >100 mJ multi-cycle THz signals from the same laser^{††}
- Our experiments have tested THz generation with up to 12 J using our MTW laser
- OMEGA-EP was then used to further push the driver energy beyond 100 J this summer

THz Pulse Energy (mJ)	THz Peak Power (GW)
1	10
0.1	1
40	57
50	36
300	420
	THz Pulse Energy (mJ) 1 0.1 40 50 300

Our experiments have generated a near TW class THz source

* G. Liao, et al, "THz pulses over 50 millijoules generated from relativistic picosecond laser-plasma interactions", PNAS March 5, 2019 116 (10) 3994-3999 [†] Koulouklidis, A. D., et al., Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments. *Nature Communications*, *11*(1), 1–8. (2020).

https://doi.org/10.1038/s41467-019-14206-x

⁺⁺G. Liao, et al., Towards Terawatt-Scale Spectrally Tunable Terahertz Pulses via Relativistic Laser-Foil Interactions. *Phys Rev X*, *10*, DOI: 10.1103/PhysRevX.10.031062

A robust and highly adjustable THz energy meter was developed for use on OMEGA-EP and MTW

- Uses the comparison of two nJ sensitive pyrometers (Signal – Background)
 - Called THz Background/Energy Meter (TBEM)*
- Filters and apertures are used to 'tune' the spectral region detected
- ~20 kg of tungsten radiation shielding installed in final design
- Electro-optical THz detectors are being pursued but are not currently available

E30139J1

^{*} Bruhaug G., et al, Development of a hardened THz energy meter for use on the kilojoule-scale, short-pulse OMEGA EP laser, submitted to the Proceedings of the High Temperature Plasma Diagnostics conference, RSI, 2022

MTW THz Campaign found <1 ps was best for THz production and that low Z foils and high Z wire targets produced the highest efficiencies of production

Wire targets were shown to generate large amounts of THz radiation above 0.5 THz compared to foil targets

Foil targets generate THz via CTR at these laser intensities, while the wire target THz generation physics is still undetermined

- CTR from foil targets scales favorably with laser intensity and inversely with Z of the target^{*}
 - The high performance of the CH foils is indicative of this

- Wire target generation physics is hypothesized to be either from a free electron motion[†] or micro-antenna action^{††}
 - Upcoming campaigns will vary wire geometry and utilize more detectors to distinguish between these two models

* G. Liao, et al, "THz pulses over 50 millijoules generated from relativistic picosecond laser-plasma interactions", PNAS March 5, 2019 116 (10) 3994-3999 † Zeng, Y., et al., Guiding and emission of miljoule single-cycle THz pulse from laser-driven wire-like targets. *Optics Express*, 28(10), 15258. (2020)., https://doi.org/10.1364/oe.390764 † Zhuo, H.B., et al., Terahertz generation from laser-driven ultrafast current propogation along a wire target. *Phys Rev E*, 95, (2017). DOI: 10.1103/PhysRevE.95.013201

>100 mJ THz pulses were also generated via foil targets using OMEGA EP

190 J drive laser and THz energy is estimated to be >150 mJ

Proton radiography was also used to directly measure GV/m scale electric fields from the THz emission

Microchannel targets were then used to generate >300 mJ THz pulses

ROCHESTER

* H. G. Rinderknecht *et al.*, "Relativistically transparent magnetic filaments: Scaling laws, initial results and prospects for strong-field QED studies," *New J. Phys.*, vol. 23, no. 9, 2021, doi: 10.1088/1367-2630/ac22e7.

Experiments focused on relativistic THz-matter interactions will take place in early 2023 using OMEGA-EP as the THz source

- Wire THz generation targets will be used to maximize yield Heat 0.5 mm Foil target shield $\times 0.5 \text{ mm}$ THz intensities on the order of $\sim 10^{14} \text{ W}/_{\text{cm}^2}$ will impinge on the target ~1 mm **THz radiation** ~0.1 mm diam. Quasi-static electric fields >10 **Mirror** Wire target GV/m expected on target ~0.5 mm |< →|< ~1 mm diamater 5 mm X-ray, charged particle and THz E29869a
- X-ray, charged particle and THz detectors will be used to monitor the interaction

A first of a kind relativistic THz experiment will be attempted

٠

٠

٠

High-Power, High Energy (HPHE) THz pulses were generated with a wide variety of targets on both the OMEGA EP and MTW lasers

Questions to: gbru@lle.rochester.edu

Four campaigns explored optimal target and laser parameters for laser-plasma THz generation using the MTW laser

E29794a

- Laser pulse energies between 10-12 Joules at 0.7-6 psec were tested
- Foil targets at normal incidence tested at 10-25 microns thickness
 - CH, AI, Ti, and Cu materials tested
 - Radiation generated at primarily at <0.3 THz
- Wire targets at angles were tested
 - Nylon, Al, Cu, Ta, and Pt materials tested
 - 20-150 micron diameter
 - Wires show capability to generate 1 THz pulses
- THz, electron and x-ray diagnostics used
 - Electron spectrometer was limited to 5 MeV
 - X-ray spectrometer was limited to Cu emission range

The June 2022 THz campaigns utilized three THz detectors at various positions

E30520

The June 8th 2022 THz campaign also interfered THz radiation with a TNSA proton beam to directly measure the electric field

GV/m scale electric fields from HPHE THz emission were seen via proton/THz interactions during these experiments

- This provides an independent measurement of the field strength of the THz emission
- The proton producing target tended to overwhelm the pyrometers with noise, which prevented dual detection

>100 mJ THz pulses needed to generate these effects

Experiments on OMEGA-EP can be extremely challenging

- The EMP environment is one of the worst seen with short pulse lasers^{*}
- Huge fluences of charged particles and x-rays irradiate all detectors**
- The beam spot is often complex and makes simulation and analysis difficult

Sudipta Mondal, Mojtaba Shirozhan, Naveed Ahmed, Maïmouna Bocoum, Frederik Boehle, Aline Vernier, Stefan Haessler, Rodrigo Lopez-Martens, François Sylla, Cedric Sire, Fabien Quéré, Kwinten Nelissen, Katalin Varjú, Dimitris Charalambidis, Subhendu Kahaly, JOSA B, **35**, A93-A102 (2018)

*S. Mondal, et al, "Surface plasma attosource beamlines at ELI-ALPS," J. Opt. Soc. Am. B 35, A93-A102 (2018)

**Shaw, J.L., *et al.* Microcoulomb (0.7 ± 0.40.20.40.2 μC) laser plasma accelerator on OMEGA TER EP. *Sci Rep* 11, 7498 (2021). https://doi.org/10.1038/s41598-021-86523-5

The window for THz detection is highly attenuating and will be switched out for a crystal quartz window on the next MTW campaign

- The results shown all used a LLE standard "OMEGA" window that is optimized for UV laser transmission
- Two crystal quarts windows will be used to replace this highly absorbing window

This window may make the previous 1 THz claims suspect

Analysis is ongoing to determine portion of THz radiation that the detectors see

- This would drive the reported emission up nearly an order of magnitude!
- Ray trace of wire target emission is ongoing

More simulations need to be done!

THz proton deflectometry is based on TNSA measurements of plasma generated fields that are commonly done in fusion experiments

- Similar experiments have been shown on a tabletop scale with electron beams^{*}
- Very simple simulations gave credence to the concept, but more will need to be done to full understand the results

First pass simulation, J. Peebles

We have two purpose built THz detectors for EP called TBEM

Front optics assembly

THz LPF + HRFZ-Si

blast shield

- Two pyros, one in the THz beam path
 - Both are sensitive to ~5 nJ
- 2" TPX lens that is 5.4" from TCC
 - 0.9 transmission per lens
- (2X) HRFZi-Si shield/filters
 - 0.5 transmission per filter
- (1X) Tydex 10 THz LPF
 - 0.7 transmission per filter
- (1X) Teflon LPF on signal detector
 - 0.8 transmission per filter
- Option to put iris in
 - 0.196", 0.3937", 0.7874" diameter plus a solid block
 - 0.00242X, 0.009688X and 0.03875X reduction respectively
- Detector can also be retracted and operated without front optics
- Has ~50 um pointing accuracy

The MTW prototype of TBEM was also attached to OMEGA-EP for some experiments

Estimates of performance

Laser Energy (J)	Laser-THz Efficiency (%)	Scenari o Type	THz on Detector (nJ)	Signal Peak on Pyrometer (mV)
50	0.05	Worst Case	7.28	8.5
300	0.1	Median Case	87.38	430.9
500	1	Best Case	1456	4694.2

