Constraining continuum lowering models at high energy densities

LLE

 $T_{e}\left(eV
ight)$

David Bishel University of Rochester Laboratory for Laser Energetics 64th Annual Meeting, Division of Plasma Physics Spokane, WA October 17 – 21, 2022

Collaborators

P. M. Nilson, D. A. Chin, S. X. Hu, E. Smith, R. Epstein, J. R. Rygg, G. W. Collins University of Rochester, Laboratory for Laser Energetics

> J. J. Ruby, E. V. Marley Lawrence Livermore National Laboratory

> > I. E. Golovkin Prism Computational Sciences

Summary

A synthetic study of continuum lowering models is guiding experiments to inform modern descriptions of continuum lowering.

- The intricate relationship between observed spectra and the underlying atomic physics requires careful consideration of where in phase space experiments should probe.
- K-shell absorption lines are demonstrated to be a sensitive measure of charge state for T > 100 eV and $\rho > 10 \text{ g/cm}^3$ in Cr.
- Combined with a temperature measurement, K-shell absorption discriminates between Ecker-Kroll and Stewart-Pyatt continuum lowering models

Traditional continuum lowering models approximate the electrostatic interaction between an ion and the circumfluent plasma.

Other formalisms exist beyond continuum lowering, each with different predicted EOS, material, and radiative properties of dense plasmas.

- "Traditional" continuum lowering models (Ecker-Kroll, Stewart-Pyatt*)
- "Modern" thermodynamic models**
- Density-functional-theory-based average ion models[†]

• .

KOCHESTER

A framework is needed for designing experiments which discriminate between (or even discard) proposed models.

^{*} Stewart & Pyatt, Astrophys. J. 144, 1203 (1966).

- Ecker & Kröll, Phys. Fluids 6, 62–69 (1963).
- ** Crowley, High Energy Density Phys. 13, 84–102 (2014).
- † Murillo Phys. Rev. E . 87, 1–19 (2013).

To demonstrate this framework, we consider Ecker-Kroll and Stewart-Pyatt.

Densities $\rho > 10 \text{ g/cm}^3$ discriminate between models.

Stewart, J. C. & Pyatt, K. D. Astrophys. J. 144, 1203 (1966). Ecker, G. & Kröll, W. Phys. Fluids 6, 62–69 (1963).

X-ray absorption spectroscopy of inner-shell transitions is amenable to probing high-density plasmas.

UR LLE

* H. Mayer, Los Alamos Tech. Rep. 5-9 (1947). S. Atzeni and J. Meyer-ter Vehn, The Physics of Inertial Fusion (2004). 7

An idealized case tests the ability for the proposed experiment to discriminate models.

Bayesian inference is used to infer plasma conditions given different continuum lowering models.

^{*} $j_{\nu} \alpha_{\nu}$ from PrismSPECT atomic structure and kinetics code J.J. MacFarlane et al, Inert. Fusion Sci. Appl. 2003 457 (2004).

Both models produce reasonable fits to the synthetic data.

5 Data (EK) Data (EK) Fits (SP) Fits (EK) Δ 3 3 2 2 2 2 0 C 5400 5500 5600 5700 5400 5500 5600 5700 hv (eV) hv (eV) Spectrum alone does not constrain continuum lowering model.

Plausible fits from Bayesian inference*,†

* D. Sivia and J. Skilling, *Data Analysis: A Bayesian Tutorial*, 2012.

[†] Numerical sampling implemented in numpyro:

E. Bingham et al., J. Mach. Learn. Res. 20, 1-6 (2019).

D. Phan et al., arXiv (2019).

The inferred plasma conditions can discriminate between models.

Inferred T , ho

- **1.** Ecker-Kroll captures the true (T, ρ)
- 2. Ecker-Kroll and Stewart-Pyatt require mutually exclusive (T, ρ) to reproduce synthetic spectra

Measurement of temperature and 1s-2p absorption discriminates between EK and SP.

This model is being extended to geometries which can create 100-eV, 10-g/cm³ plasmas.

Implosions access requisite conditions

Spherical geometries require additional parameters, enable new avenues for constraint

See E. Smith, TO05.00010, Thursday morning for constraint of thermodynamic states in implosions

Summary

A synthetic study of continuum lowering models is guiding experiments to inform modern descriptions of continuum lowering.

- The intricate relationship between observed spectra and the underlying atomic physics requires careful consideration of where in phase space experiments should probe.
- K-shell absorption lines are demonstrated to be a sensitive measure of charge state for T > 100 eV and $\rho > 10 \text{ g/cm}^3$ in Cr.
- Combined with a temperature measurement, K-shell absorption discriminates between Ecker-Kroll and Stewart-Pyatt continuum lowering models

Backup Slides

The screened hydrogenic model* is a computationally inexpensive atomic model for estimating material and radiative properties.

- Considers a fictitious average ion, having fractional charge and electron populations
 - One-electron atomic structure, modified by screening of a given shell by all other electrons
 - Can be implemented with varying degrees of detail (quantum numbers)
- Quick enough to generate ionization state, radiative properties for a radiation hydrodynamic code

KOCHESTER

* H. Mayer, Los Alamos Tech. Rep. 5–9 (1947). S. Atzeni and J. Meyer-ter Vehn, The Physics of Inertial Fusion (2004). 15

Ecker-Kroll exhibits "threshold-like" ionization events, whereas that in Stewart-Pyatt is more continuous.

- Threshold-like L-shell pressure ionization at ~ 10 g/cc
- Minor ionization up to 500 g/cc
- Threshold-like K-shell pressure ionization at ~ 500 g/cc.

- Continuous ionization across full span of ρ

Pursuing $\Delta \overline{Z}$ "bump" may be difficult in dense systems

