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Anisotropic electron temperatures were inferred from Thomson-
scattering analysis of magnetized gas-jet plasmas

• Low density Nitrogen plasmas (𝐧𝐧𝒆𝒆 < 𝟏𝟏𝟎𝟎𝟏𝟏𝟏𝟏𝒄𝒄𝒎𝒎−𝟑𝟑) were magnetized by a 15 T field produced by MIFEDS*.

• The plasma conditions were probed in perpendicular directions through the use of multiple Thomson-
scattering beams.

• The electron temperatures required to fit the data with an assumed distribution function are anisotropic 
in velocity space.

*MIFEDS: Magneto-Inertial Fusion Electrical Discharge System
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Experimental Setup

In this experiment, a 2𝝎𝝎 beam was used to create a column of 
magnetized, Nitrogen plasma

2𝝎𝝎: Frequency doubled to 526nm 
MIFEDS: Magneto-Inertial Fusion Electrical Discharge System

Nitrogen Gas

MIFEDS

Magnetic field

Plasma forming beam
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The magnetic field is nearly uniform over the interaction volume

Bz

Contours are 4 T steps
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The magnetic field is nearly uniform over the interaction volume

Bz

Contours are 4 T steps

Gas-jet plume 
(2mm diameter)
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To diagnose the plasma, 3𝝎𝝎 Thomson-scattering beams probe 
plasma fluctuations relative to the direction of the magnetic field

Parallel probe (𝒌𝒌𝒊𝒊) Perpendicular probe (𝒌𝒌𝒊𝒊)

𝟏𝟏𝟏𝟏𝟏𝟏 𝝁𝝁𝒎𝒎𝟑𝟑 scattering volume
(where the measurement is made) 3𝝎𝝎: Frequency tripled to 351nm

subscripts denote scattered (s) and incident (i) light

Perpendicular fluctuation (𝒌𝒌⊥)

B field

Parallel 𝒌𝒌𝒊𝒊

Perpendicular 𝒌𝒌𝒊𝒊

Scattered light (𝒌𝒌𝒔𝒔)

Parallel fluctuation (𝒌𝒌||)

𝒌𝒌 𝜔𝜔 = 𝒌𝒌𝒔𝒔 𝜔𝜔𝑠𝑠 − 𝒌𝒌𝒊𝒊 𝜔𝜔𝑖𝑖
𝜔𝜔 = 𝜔𝜔𝑠𝑠 − 𝜔𝜔𝑖𝑖

Thomson collection cone (𝒌𝒌𝒔𝒔)
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• 𝑓𝑓𝑒𝑒𝑒𝑒 , 𝑓𝑓𝑖𝑖𝑖𝑖 – One-dimensional electron and ion velocity distribution functions in the direction of the fluctuation, k

• ϵ = 1 + 𝜒𝜒𝑒𝑒 + 𝜒𝜒𝑖𝑖 – Longitudinal dielectric function, dependent on particle susceptibilities:

• Z, 𝑛𝑛𝑠𝑠𝑠, 𝑚𝑚𝑠𝑠 – Average ionization, particle number density, particle mass

The spectral shape of the Thomson-scattered light is a function of 
the particle distribution functions*

*assuming the plasma is collisionless (𝒌𝒌 𝝀𝝀𝒊𝒊𝒊𝒊 ≫ 𝟏𝟏) and unmagnetized (𝝎𝝎𝒑𝒑𝒑𝒑 ≫ 𝝎𝝎𝒄𝒄𝒄𝒄)
Froula et al., Plasma Scattering of Electromagnetic Radiation (Second Edition), 2011
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• 𝑓𝑓𝑒𝑒𝑒𝑒 , 𝑓𝑓𝑖𝑖𝑖𝑖 – One-dimensional electron and ion velocity distribution functions in the direction of the fluctuation, k

• ϵ = 1 + 𝜒𝜒𝑒𝑒 + 𝜒𝜒𝑖𝑖 – Longitudinal dielectric function, dependent on particle susceptibilities:

• Z, 𝑛𝑛𝑠𝑠𝑠, 𝑚𝑚𝑠𝑠 – Average ionization, particle number density, particle mass

The spectral shape of the Thomson-scattered light is a function of 
the particle distribution functions*

*assuming the plasma is collisionless (𝒌𝒌 𝝀𝝀𝒊𝒊𝒊𝒊 ≫ 𝟏𝟏) and unmagnetized (𝝎𝝎𝒑𝒑𝒑𝒑 ≫ 𝝎𝝎𝒄𝒄𝒄𝒄)
Froula et al., Plasma Scattering of Electromagnetic Radiation (Second Edition), 2011

Plasma modes (𝝐𝝐 → 𝟎𝟎) show up as peaks in scattered spectrum.
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For a Maxwellian electron distribution, the IAW (𝜔𝜔2 = 𝑘𝑘2 𝐶𝐶𝑠𝑠2) resonance is at a phase velocity, 𝜔𝜔
𝑘𝑘
, near the 

ion sound speed, 𝐶𝐶𝑠𝑠 ≈ 𝑍𝑍𝑇𝑇𝑒𝑒 + 3𝑇𝑇𝑖𝑖 /𝑚𝑚𝑖𝑖 , in the direction of the fluctuation.

In a low frequency regime (𝝎𝝎𝒔𝒔 ≈ 𝝎𝝎𝒊𝒊) the peaks in the scattered 
spectrum are produced by the Ion Acoustic mode (IAW)
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𝚫𝚫𝝎𝝎~ 𝒌𝒌 𝑪𝑪𝒔𝒔

For a Maxwellian electron distribution, the IAW (𝜔𝜔2 = 𝑘𝑘2 𝐶𝐶𝑠𝑠2) resonance is at a phase velocity, 𝜔𝜔
𝑘𝑘
, near the 

ion sound speed, 𝐶𝐶𝑠𝑠 ≈ 𝑍𝑍𝑇𝑇𝑒𝑒 + 3𝑇𝑇𝑖𝑖 /𝑚𝑚𝑖𝑖 , in the direction of the fluctuation.

In a low frequency regime (𝝎𝝎𝒔𝒔 ≈ 𝝎𝝎𝒊𝒊) the peaks in the scattered 
spectrum are produced by the Ion Acoustic mode (IAW)

A measurement of the frequency shift between these peaks is a measurement of the plasma mode 
frequency in the direction of the momentum-conserved fluctuation.
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In our experiment, the spectrum of scattered light from the orthogonal 
fluctuations have an inconsistent frequency shift

From parallel 
fluctuation (𝒌𝒌||)

From perpendicular 
fluctuation (𝒌𝒌⊥)
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In our experiment, the spectrum of scattered light from the orthogonal 
fluctuations have an inconsistent frequency shift

From parallel 
fluctuation (𝒌𝒌||)

From perpendicular 
fluctuation (𝒌𝒌⊥)

𝚫𝚫𝝀𝝀 ~ 𝝎𝝎 ≈ 𝒌𝒌∥ 𝑪𝑪𝒔𝒔 ~ 𝒌𝒌∥ 𝑻𝑻𝒆𝒆

𝚫𝚫𝝀𝝀 ~ 𝝎𝝎 ≈ 𝒌𝒌⊥ 𝑪𝑪𝒔𝒔 ~ 𝒌𝒌⊥ 𝑻𝑻𝒆𝒆
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Inspection of the two scattering features shows the frequency shift is 
due to a difference in the electron temperature*

The temperature in the parallel direction is fit to 130 eV. The 
perpendicular direction is fit much to a much colder temperature of 74eV.

*assuming a Maxwellian distribution function
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Inspection of the two scattering features shows the frequency shift is 
due to a difference in the electron temperature*

The temperature in the parallel direction is fit to 130 eV. The 
perpendicular direction is fit much to a much colder temperature of 74eV.

*assuming a Maxwellian distribution function
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Consistently lower perpendicular temperatures are required to fit the 
data for the duration of the 2 ns experiment

These data are characterized by a plasma beta 𝜷𝜷 = 𝑷𝑷𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝑷𝑷𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

~𝟐𝟐 and a Hall parameter 𝝎𝝎𝒄𝒄𝒄𝒄𝝉𝝉𝒆𝒆𝒆𝒆~𝟏𝟏𝟏𝟏
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• What have we considered in modeling these results?
－ PIC, CGL cooling, VFP, 2nd order perturbation modeling
－ List what we have tried: 
－ 1D pic sims (Han) – What did this tell us?
－ Calculation of magnetic modes – Ideal Magnetosonic Wave moves in wrong direction
－ Magnetic field skin effect near nozzle (Tony) – Does not create any significant gradients in magnetic 

field
－ Look at local EDF (toy model, 'ud') effect on IAW frequency – Changes amplitude/damping of the 

modes, not the frequency
- Same as 1st order vector correction to distribution function

－ Collisionless CGL cooling / magnetic mirror – Are the electrons collisionless enough for this?

• What are we working on currently?
－ 2nd order, anisotropic tensor corrections
－ Collisional ion effects in the IAW 
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The frequency shift of the plasma mode is inconsistent with the 
expected MHD wave

A magnetoacoustic wave would be driven by the compression of the magnetic field in addition to the plasma:

𝝎𝝎𝟐𝟐 =
𝟏𝟏
𝟐𝟐
𝒌𝒌𝟐𝟐 𝒄𝒄𝒔𝒔𝟐𝟐 + 𝒗𝒗𝑨𝑨𝟐𝟐 [𝟏𝟏 ± 𝟏𝟏 − 𝜹𝜹 𝟏𝟏/𝟐𝟐]

𝜹𝜹 =
𝟒𝟒𝒌𝒌∥𝟐𝟐

𝒌𝒌𝟐𝟐
𝒄𝒄𝒔𝒔𝟐𝟐 𝒗𝒗𝑨𝑨𝟐𝟐

𝒄𝒄𝒔𝒔𝟐𝟐 + 𝒗𝒗𝑨𝑨𝟐𝟐
𝟐𝟐

－ This would result in a frequency upshift (relative to the IAW frequency) and would be interpreted as a 
greater perpendicular temperature

Boyd & Sanderson
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• From simple adiabatic theory*
－ Expanding plasma maintains magnetic invariants in the parallel/perpendicular direction:

• With constant density:
－ 𝑷𝑷⊥ ∝ 𝑩𝑩, 𝑷𝑷∥ ∝ 𝑩𝑩−𝟐𝟐

• With a “frozen-in” magnetic field
－ 𝑷𝑷⊥ ∝ 𝒏𝒏𝟐𝟐 ∝ 𝑩𝑩𝟐𝟐, 𝑷𝑷∥ ∝ 𝒏𝒏 ∝ 𝑩𝑩

An alternate explanation of the results is a non-isotropic electron 
velocity distribution

*no pressure transport along field lines

Chew, G. F., M. L. Goldberger, and F. E. Low. "The Boltzmann equation an d the one-fluid 
hydromagnetic equations in the absence of particle collisions." Proceedings of the Royal 

Society of London. Series A. Mathematical and Physical Sciences 236.1204 (1956): 112-118.

𝒅𝒅
𝒅𝒅𝒅𝒅

𝑷𝑷||𝑩𝑩𝟐𝟐

𝝆𝝆𝟎𝟎𝟑𝟑
= 𝟎𝟎

𝒅𝒅
𝒅𝒅𝒅𝒅

𝑷𝑷⊥
𝝆𝝆𝟎𝟎𝑩𝑩

= 𝟎𝟎
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• From simple adiabatic theory*
－ Expanding plasma maintains magnetic invariants in the parallel/perpendicular direction:

• With constant density:
－ 𝑷𝑷⊥ ∝ 𝑩𝑩, 𝑷𝑷∥ ∝ 𝑩𝑩−𝟐𝟐

• With a “frozen-in” magnetic field
－ 𝑷𝑷⊥ ∝ 𝒏𝒏𝟐𝟐 ∝ 𝑩𝑩𝟐𝟐, 𝑷𝑷∥ ∝ 𝒏𝒏 ∝ 𝑩𝑩

An alternate explanation of the results is a non-isotropic electron 
velocity distribution

A dynamic balance between inverse-bremsstrahlung heating, 
collisional relaxation, and adiabatic cooling could explain these results.

*no pressure transport along field lines

Chew, G. F., M. L. Goldberger, and F. E. Low. "The Boltzmann equation an d the one-fluid 
hydromagnetic equations in the absence of particle collisions." Proceedings of the Royal 

Society of London. Series A. Mathematical and Physical Sciences 236.1204 (1956): 112-118.

𝒅𝒅
𝒅𝒅𝒅𝒅

𝑷𝑷||𝑩𝑩𝟐𝟐

𝝆𝝆𝟎𝟎𝟑𝟑
= 𝟎𝟎

𝒅𝒅
𝒅𝒅𝒅𝒅

𝑷𝑷⊥
𝝆𝝆𝟎𝟎𝑩𝑩

= 𝟎𝟎
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• Low density Nitrogen plasmas (𝐧𝐧𝒆𝒆 < 𝟏𝟏𝟎𝟎𝟏𝟏𝟏𝟏𝒄𝒄𝒎𝒎−𝟑𝟑) were magnetized by a 15 T field produced by MIFEDS*.

• The plasma conditions were probed in perpendicular directions through the use of multiple Thomson-
scattering beams.

• The electron temperatures required to fit the data with an assumed distribution function are anisotropic 
in velocity space.

Anisotropic electron temperatures were inferred from Thomson-
scattering analysis of magnetized gas-jet plasmas

*MIFEDS: Magneto-Inertial Fusion Electrical Discharge System
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Thanks!
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