Anisotropic Electron Temperatures in Magnetized Plasmas

Zachariah Barfield

University of Rochester Laboratory for Laser Energetics 64th Annual Meeting of the APS Division of Plasma Physics 10/17/2022

Anisotropic electron temperatures were inferred from Thomsonscattering analysis of magnetized gas-jet plasmas

- Low density Nitrogen plasmas ($n_e < 10^{19} cm^{-3}$) were magnetized by a 15 T field produced by MIFEDS*.
- The plasma conditions were probed in perpendicular directions through the use of multiple Thomsonscattering beams.
- The electron temperatures required to fit the data with an assumed distribution function are anisotropic in velocity space.

Collaborators

D.H. Froula, J. Palastro, P.V. Heuer, L. Luis, P. Tzeferacos, J.L. Peebles, D. Mastrosimone, J. Katz

University of Rochester Laboratory for Laser Energetics

In this experiment, a 2ω beam was used to create a column of magnetized, Nitrogen plasma

 2ω : Frequency doubled to 526nm MIFEDS: Magneto-Inertial Fusion Electrical Discharge System

The magnetic field is nearly uniform over the interaction volume

Contours are 4 T steps

The magnetic field is nearly uniform over the interaction volume

Contours are 4 T steps

To diagnose the plasma, 3ω Thomson-scattering beams probe plasma fluctuations relative to the direction of the magnetic field

 $^{3\}omega$: Frequency tripled to 351nm subscripts denote scattered (s) and incident (i) light

The spectral shape of the Thomson-scattered light is a function of the particle distribution functions*

$$S(\mathbf{k},\omega) = \frac{2\pi}{k} \left| 1 - \frac{\chi_e}{\epsilon} \right|^2 f_{eo}\left(\frac{\omega}{k}\right) + \frac{2\pi Z}{k} \left|\frac{\chi_e}{\epsilon}\right|^2 f_{io}\left(\frac{\omega}{k}\right)$$

- f_{eo} , f_{io} One-dimensional electron and ion velocity distribution functions in the direction of the fluctuation, k
- $\epsilon = 1 + \chi_e + \chi_i$ Longitudinal dielectric function, dependent on particle susceptibilities:

$$\chi_s = \int_{-\infty}^{\infty} d\mathbf{v} \frac{4\pi Z_s^2 e^2 n_{so}}{m_s k^2} \frac{\mathbf{k} \cdot \delta f_{so} / \delta \mathbf{v}}{\omega - \mathbf{k} \cdot \mathbf{v} - i\gamma}$$

• Z, n_{s0} , m_s – Average ionization, particle number density, particle mass

The spectral shape of the Thomson-scattered light is a function of the particle distribution functions*

$$S(\mathbf{k},\omega) = \frac{2\pi}{k} \left| 1 - \frac{\chi_e}{\epsilon} \right|^2 f_{eo}\left(\frac{\omega}{k}\right) + \frac{2\pi Z}{k} \left|\frac{\chi_e}{\epsilon}\right|^2 f_{io}\left(\frac{\omega}{k}\right)$$

- f_{eo} , f_{io} One-dimensional electron and ion velocity distribution functions in the direction of the fluctuation, k
- $\epsilon = 1 + \chi_e + \chi_i$ Longitudinal dielectric function, dependent on particle susceptibilities:

$$\chi_s = \int_{-\infty}^{\infty} d\mathbf{v} \frac{4\pi Z_s^2 e^2 n_{so}}{m_s k^2} \frac{\mathbf{k} \cdot \delta f_{so} / \delta \mathbf{v}}{\omega - \mathbf{k} \cdot \mathbf{v} - i\gamma}$$

• Z, n_{s0} , m_s – Average ionization, particle number density, particle mass

Plasma modes ($\epsilon \rightarrow 0$) show up as peaks in scattered spectrum.

*assuming the plasma is collisionless ($k \lambda_{ii} \gg 1$) and unmagnetized ($\omega_{pi} \gg \omega_{ce}$) Froula et al., *Plasma Scattering of Electromagnetic Radiation (Second Edition)*, 2011

In a low frequency regime ($\omega_s \approx \omega_i$) the peaks in the scattered spectrum are produced by the Ion Acoustic mode (IAW)

For a Maxwellian electron distribution, the IAW ($\omega^2 = k^2 C_s^2$) resonance is at a phase velocity, $\frac{\omega}{k}$, near the ion sound speed, $C_s \approx \sqrt{(ZT_e + 3T_i)/m_i}$, in the direction of the fluctuation.

In a low frequency regime ($\omega_s \approx \omega_i$) the peaks in the scattered spectrum are produced by the Ion Acoustic mode (IAW)

For a Maxwellian electron distribution, the IAW ($\omega^2 = k^2 C_s^2$) resonance is at a phase velocity, $\frac{\omega}{k}$, near the ion sound speed, $C_s \approx \sqrt{(ZT_e + 3T_i)/m_i}$, in the direction of the fluctuation.

A measurement of the frequency shift between these peaks is a measurement of the plasma mode frequency in the direction of the momentum-conserved fluctuation.

In our experiment, the spectrum of scattered light from the orthogonal fluctuations have an inconsistent frequency shift

ROCHESTER

In our experiment, the spectrum of scattered light from the orthogonal fluctuations have an inconsistent frequency shift

Inspection of the two scattering features shows the frequency shift is due to a difference in the electron temperature*

E30375b

ROCHESTER

Inspection of the two scattering features shows the frequency shift is due to a difference in the electron temperature*

ROCHESTER

Consistently lower perpendicular temperatures are required to fit the data for the duration of the 2 ns experiment

These data are characterized by a plasma beta $\beta = \frac{P_{thermal}}{P_{magnetic}} \sim 2$ and a Hall parameter $\omega_{ce} \tau_{ei} \sim 10$

- What have we considered in modeling these results?
 - PIC, CGL cooling, VFP, 2nd order perturbation modeling
 - List what we have tried:
 - 1D pic sims (Han) What did this tell us?
 - Calculation of magnetic modes Ideal Magnetosonic Wave moves in wrong direction
 - Magnetic field skin effect near nozzle (Tony) Does not create any significant gradients in magnetic field
 - Look at local EDF (toy model, 'ud') effect on IAW frequency Changes amplitude/damping of the modes, not the frequency
 - Same as 1st order vector correction to distribution function
 - Collisionless CGL cooling / magnetic mirror Are the electrons collisionless enough for this?
- What are we working on currently?
 - 2nd order, anisotropic tensor corrections
 - Collisional ion effects in the IAW

The frequency shift of the plasma mode is inconsistent with the expected MHD wave

A magnetoacoustic wave would be driven by the compression of the magnetic field in addition to the plasma:

$$\omega^{2} = \frac{1}{2} k^{2} (c_{s}^{2} + v_{A}^{2}) [1 \pm (1 - \delta)^{1/2}]$$
$$\delta = \frac{4k_{\parallel}^{2}}{k^{2}} \left(\frac{c_{s}^{2} v_{A}^{2}}{(c_{s}^{2} + v_{A}^{2})^{2}} \right)$$

 This would result in a frequency upshift (relative to the IAW frequency) and would be interpreted as a greater perpendicular temperature

An alternate explanation of the results is a non-isotropic electron velocity distribution

- From simple adiabatic theory*
 - Expanding plasma maintains magnetic invariants in the parallel/perpendicular direction:

$$\frac{d}{dt}\left(\frac{P_{||}B^2}{\rho_0^3}\right) = \mathbf{0}$$
$$\frac{d}{dt}\left(\frac{P_{\perp}}{\rho_0 B}\right) = \mathbf{0}$$

• With constant density:

 $- P_{\perp} \propto B, \qquad P_{\parallel} \propto B^{-2}$

• With a "frozen-in" magnetic field $-P_{\perp} \propto n^2 \propto B^2, \quad P_{\parallel} \propto n \propto B$

*no pressure transport along field lines

Chew, G. F., M. L. Goldberger, and F. E. Low. "The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions." Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 236.1204 (1956): 112-118.

An alternate explanation of the results is a non-isotropic electron velocity distribution

- From simple adiabatic theory*
 - Expanding plasma maintains magnetic invariants in the parallel/perpendicular direction:

$$\frac{d}{dt}\left(\frac{P_{||}B^2}{\rho_0^3}\right) = \mathbf{0}$$
$$\frac{d}{dt}\left(\frac{P_{\perp}}{\rho_0 B}\right) = \mathbf{0}$$

• With constant density:

 $- P_{\perp} \propto B, \qquad P_{\parallel} \propto B^{-2}$

• With a "frozen-in" magnetic field

 $- P_{\perp} \propto n^2 \propto B^2, \qquad P_{\parallel} \propto n \propto B$

A dynamic balance between inverse-bremsstrahlung heating, collisional relaxation, and adiabatic cooling could explain these results.

*no pressure transport along field lines

Chew, G. F., M. L. Goldberger, and F. E. Low. "The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions." Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 236.1204 (1956): 112-118.

Anisotropic electron temperatures were inferred from Thomsonscattering analysis of magnetized gas-jet plasmas

- Low density Nitrogen plasmas ($n_e < 10^{19} cm^{-3}$) were magnetized by a 15 T field produced by MIFEDS*.
- The plasma conditions were probed in perpendicular directions through the use of multiple Thomsonscattering beams.
- The electron temperatures required to fit the data with an assumed distribution function are anisotropic in velocity space.

Thanks!