Magnetized Collisionless Shock Formation Mediated by the Modified Two-Stream Instability

1.5 $t = 0.10 T_{ci1} (0.126 \text{ ns})$ 1.0 0.5 $k_y [\omega_{pe}/c]$ 0.0 -0.5-1.0 $E_{\rm x}$ Fourier spectrum -1.5+-1.5 -1.0-0.50.0 0.5 1.0 1.5 $k_x \left[\omega_{pe} / c \right]$ 20 40 60 80 100 0 a.u.

Yu (Victor) Zhang University of Rochester Laboratory for Laser Energetics 63rd Annual Meeting of the APS Division of Plasma Physics Pittsburgh, Pennsylvania 8-12 November 2021

Summary

A laboratory achievable perpendicular magnetized collisionless shock is mediated by a modified two-stream instability

- Supercritical perpendicular magnetized collisionless shock can be readily formed on TeraWatt laser systems (e.g. OMEGA-EP)
- Mode analysis in the shock transition region indicates a modified two-stream instability (MTSI) provides the main dissipation for shock formation
- The growth rate of MTSI (γ_{MTSI}) is much larger than (>10x) the ion gyro-frequency (Ω_{ci}); realistic ion/electron mass ratio substantially separates the shock formation time from T_{ci} (= $2\pi/\Omega_{ci}$)
- Shock reflected ions gyrate in the upstream and participate in shock front reformation

Collaborators

P. V. Heuer, J. R. Davies, C. Ren

University of Rochester Laboratory for Laser Energetics

This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0003856, Department of Energy Award Number DE-SC0020431, and the resources of NERSC.

The authors thank UCLA-IST OSIRIS consortium for the use of OSIRIS code.

High-power lasers and computational advances enable study of collisionless shocks in the laboratory

Studies on magnetized collisionless shock

- Telescopes*
- In situ spacecraft missions**
- Laser experiments[†]
- Simulations[‡]

Bow shock near galactic center* (Gemini North, Oct. 17, 2000)

International Sun-Earth Explorer (ISEE) Program**

Drive Lasers

IIE

Quasi-1D particle-in-cell simulation[‡]

** UCLA, http://www-ssc.igpp.ucla.edu/ssc/isee.html; Wang et al., Geophys. Res. Lett. 46, 562 (2019)

plasma plumes experiment[†]

- [†] Woolsey *et al.*, Phys. Plasmas **8**, 2439 (2001); Schaeffer *et al.*, Phys. Plasmas **19**, 070702 (2012); Schaeffer *et al.*, Phys. Plasmas **24**, 041405 (2017) [‡] Matsukiyo *et al.*, J. Geophys. Res. **108**, 1459 (2003); Matsukiyo *et al.*, ApJ **742** 47 (2011);
- Park et al., Phys. Plasmas 19, 062904 (2012); Park et al., ApJ 765 147 (2013); Schaeffer et al., Phys. Plasmas 27, 042901 (2020)

CH Pisto

^{*} NASA, https://apod.nasa.gov/apod/ap001017.html

A collisionless shock can be launched by a laser-driven super-magnetosonic piston on TeraWatt laser systems

$$\mathbf{v}^{[\text{sim./wall/piston}]} = \mathbf{v}^{[\text{lab}]} + V_{\text{d}}\mathbf{e}_{x}$$

Modified two-stream instability provides dissipation for the collisionless shocks

The shock can form within an ion gyro-period T_{ci} (=2 π/Ω_{ci}), or, a few tenths of a nanosecond under $B \sim 50$ T

A supercritical hydrogen shock forms within 0.1 T_{ci}

• The signature of a supercritical shock: reflected ions

Mach #: $M_s \sim 5.62, M_A \sim 2.06$

Weibel instability is suppressed by the strong external magnetic field

Shock compression ratio: $r \sim 2.35$

lons are reflected by self-generated *E*-field, resulting in MTSI

• Low-energy tail of incoming ion is reflected to $v_{xi} \sim 2V_{\text{shock}}$ by an electrostatic E_x field*

Mode analysis indicates MTSI is the operating instability

Motional electric field also accelerates reflected ions in the shock tangential direction

• Reflected ion is co-accelerated by the motional E_z field to 6.5-9.7 keV (average ~8 keV)

Accelerated ions will participate in shock front reformation at later times

Longer time 1D simulations shows shock front reformation as shock evolves

- Shock front reformation happens on length scale of $\sim \rho_{i1}$, with a period of $\sim 0.55 T_{ci1}$
- Rankine–Hugoniot jump conditions are satisfied for a portion of the duration in each reformation period (white dashed line)

Summary

A laboratory achievable perpendicular magnetized collisionless shock is mediated by a modified two-stream instability

- Supercritical perpendicular magnetized collisionless shock can be readily formed on TeraWatt laser systems (e.g. OMEGA-EP)
- Mode analysis in the shock transition region indicates a modified two-stream instability (MTSI) provides the main dissipation for shock formation
- The growth rate of MTSI (γ_{MTSI}) is much larger than (>10x) the ion gyro-frequency (Ω_{ci}); realistic ion/electron mass ratio substantially separates the shock formation time from T_{ci} (= $2\pi/\Omega_{ci}$)
- Shock reflected ions gyrate in the upstream and participate in shock front reformation

