Magnetized Collisionless Shock Formation Mediated by the Modified Two-Stream Instability

Yu (Victor) Zhang
University of Rochester
Laboratory for Laser Energetics

63rd Annual Meeting of the APS
Division of Plasma Physics
Pittsburgh, Pennsylvania
8-12 November 2021
A laboratory achievable perpendicular magnetized collisionless shock is mediated by a modified two-stream instability

- Supercritical perpendicular magnetized collisionless shock can be readily formed on TeraWatt laser systems (e.g. OMEGA-EP)
- Mode analysis in the shock transition region indicates a modified two-stream instability (MTSI) provides the main dissipation for shock formation
- The growth rate of MTSI (γ_{MTSI}) is much larger than (>10x) the ion gyro-frequency (Ω_{ci}); realistic ion/electron mass ratio substantially separates the shock formation time from $T_{ci} (=2\pi/\Omega_{ci})$
- Shock reflected ions gyrate in the upstream and participate in shock front reformation

Zhang et al., Phys. Plasmas 28, 072111 (2021)
Collaborators

P. V. Heuer, J. R. Davies, C. Ren

University of Rochester
Laboratory for Laser Energetics

This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0003856, Department of Energy Award Number DE-SC0020431, and the resources of NERSC. The authors thank UCLA-IST OSIRIS consortium for the use of OSIRIS code.
High-power lasers and computational advances enable study of collisionless shocks in the laboratory

Studies on magnetized collisionless shock

- Telescopes*
- *In situ* spacecraft missions**
- Laser experiments†
- Simulations‡

Bow shock near galactic center* (Gemini North, Oct. 17, 2000)

International Sun-Earth Explorer (ISEE) Program**

OMEGA-EP counterpropagating plasma plumes experiment†

Quasi-1D particle-in-cell simulation‡

‡ Matsukiyo et al., J. Geophys. Res. 108, 1459 (2003); Matsukiyo et al., ApJ 742 47 (2011);
A collisionless shock can be launched by a laser-driven super-magnetosonic piston on TeraWatt laser systems.

\[\mathbf{v}_{[\text{sim./wall/piston}]} = \mathbf{v}_{[\text{lab}]} + V_d \mathbf{e}_x \]
Modified two-stream instability provides dissipation for the collisionless shocks

- Dispersion relation* (Maxwellian unmagnetized ion and magnetized electron)

\[1 + \frac{\omega_{pe}^2}{k^2 v_{th}^2} \left[1 - \exp \left(-\lambda_e \right) \sum_{n=-\infty}^{\infty} I_m (\lambda_e, \frac{\omega}{\omega + m\Omega_{ce}}) - \sum_{s=m,ce} \frac{\omega_{ps}^2}{2k^2v_{th}^2} Z'(\xi_s) = 0 \]

\[\frac{\gamma_{MTSI}}{B} - \frac{\omega_{le}}{B} = e \sqrt{\frac{Z}{m_i \gamma_e}} \]

\[\frac{\gamma_{MTSI}}{\Omega_{ci}} \gg \Omega_{ci} \]

The shock can form within an ion gyro-period \(T_{ci} (=2\pi/\Omega_{ci}) \), or, a few tenths of a nanosecond under \(B \sim 50 \) T.

** McBride et al., Phys. Fluids 15, 2368 (1972)

\[\frac{M_{s1}}{m_i} \]

Reduced \(m_i/m_e \), unrealistically high \(B \), and/or reduced \(c \), may alter the relative importance of different instabilities.
A supercritical hydrogen shock forms within $0.1 \ T_{ci}$

- The signature of a supercritical shock: reflected ions

Shock compression ratio: $r \sim 2.35$

Mach #: $M_s \sim 5.62, \ M_A \sim 2.06$

Weibel instability is suppressed by the strong external magnetic field
Ions are reflected by self-generated E-field, resulting in MTSI

- Low-energy tail of incoming ion is reflected to $v_{xi} \sim 2V_{\text{shock}}$ by an electrostatic E_x field

Mode analysis indicates MTSI is the operating instability

- Fourier spectrum
 - E_x fluctuation
 - Dispersion relation
 - Phase space
 - Piston distribution
Motional electric field also accelerates reflected ions in the shock tangential direction

- Reflected ion is co-accelerated by the motional E_z field to 6.5-9.7 keV (average ~8 keV)

Accelerated ions will participate in shock front reformation at later times
Longer time 1D simulations shows shock front reformation as shock evolves

- Shock front reformation happens on length scale of $\sim \rho_{i1}$, with a period of $\sim 0.55 T_{ci1}$
- Rankine–Hugoniot jump conditions are satisfied for a portion of the duration in each reformation period (white dashed line)
Summary

A laboratory achievable perpendicular magnetized collisionless shock is mediated by a modified two-stream instability

• Supercritical perpendicular magnetized collisionless shock can be readily formed on TeraWatt laser systems (e.g. OMEGA-EP)
• Mode analysis in the shock transition region indicates a modified two-stream instability (MTSI) provides the main dissipation for shock formation
• The growth rate of MTSI (γ_{MTSI}) is much larger than (>10x) the ion gyro-frequency (Ω_{ci}); realistic ion/electron mass ratio substantially separates the shock formation time from T_{ci} (=2π/\Omega_{ci})
• Shock reflected ions gyrate in the upstream and participate in shock front reformation