Three-Dimensional Hot-Spot Reconstruction in Inertial Fusion Implosions

K. M. Woo University of Rochester Laboratory for Laser Energetics 63rd Annual Meeting of the American Physical Society Division of Plasma Physics Pittsburgh, Pennsylvania 8 – 12 November 2021

Summary

A platform of three-dimensional (3-D) hot-spot reconstruction procedures has been developed to quantify 3-D effects of low modes in ICF implosion experiments

- A tomography method is developed to reconstruct the 3-D plasma emissivity.
- Procedures of 3-D analysis are developed by integrating 3-D hot-spot shape asymmetries with nuclear measurements including ion-temperature (T_i), flow, and areal-density (ρR) asymmetries.
- Residual kinetic energies (RKE's) are shown to be a driving factor causing low-mode implosion asymmetries.

The 3-D analysis will be applied to minimize the low-mode implosion asymmetry in future work.

See Jim's talk in NO04.00009. See Kristen's talk in ZO04.00007.

R. Betti, C. Thomas, C. Stoeckl, K. Churnetski, C. Forrest, Z. L. Mohamed, B. Zirps*, S. Regan, T. Collins, W. Theobald, R. Shah, O. Mannion**, D. Patel, D. Cao, J. Knauer, V. Goncharov, R. Bahukutumbi, H. Rinderknecht, R. Epstein, V. Gopalaswamy and F. Marshall

Laboratory for Laser Energetics, University of Rochester

^{*} Graduated Student from University of Rochester ** Currently at Sandia National Laboratories

A 3-D spherical-harmonic Gaussian function is used to reconstruct the 3-D plasma emissivity

3-D hot-spot emissivity ε_{ν} at a given spectral frequency ν $\ln \varepsilon_{\nu}(r,\theta,\phi) = \sum_{n=0}^{\infty} \sigma_n R^n \left[1 + \sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{\ell} \sum_{k=0}^{\infty} A_{\ell m k} R^k Y_{\ell m}(\theta,\phi) \right]^n$ $T_e = -\varepsilon_{\nu} / \left[\frac{\partial \varepsilon_{\nu}}{\partial h \nu} \right] \longrightarrow n_e \propto \sqrt{\varepsilon_{\nu} / \sqrt{T_e}}$ Unfolded T_e (keV)
Unfolded n_e (A. U.)

For 1-D implosions, the 3-D emissivity model is reduced to a super-Gaussian model with an exponent of 4 and zero mode amplitudes.

$$\ln I_{1D} = \sum_{n=0}^{4} \sigma_n R^n \to \boxed{I_{1D} = I_0 e^{-(R/\sigma)^4}}$$
$$I_0 = e^{a_0}, \ \sigma_4 = -1/\sigma^4$$

See Ref. [S. Eck et. al. Medical Image Analysis <u>32</u>, 18-31 (2016)] for applying sph<mark>erical-harmonic Gaussi</mark>an function<mark>s.</mark> See Ref. [G. Aubert, AIP Advances <u>3</u>, 062121 (2013)] for rotating spherical harm<mark>onics using Wigner d-ma</mark>trices. See Kristen's talk in ZO04.00007.

The 3-D plasma emissivity model is optimized by a dynamic learning algorithm* to fit its 2-D projections with x-ray images measured at different lines of sight

The 3-D plasma emissivity model is used to reconstruct implosions with mode $\ell = 1$, 2, and 6 hot-spot shapes

Residual kinetic energies are the driving factor for *T*_i and hot-spot flow asymmetries

$$T_{\text{apparent}}^{\text{Brysk}^{**}} = T_{\text{th}} + M_0 \cdot \text{Var}\left[\overrightarrow{v} \cdot \hat{d}\right] \quad \blacktriangleleft$$

v is the flow velocity in the laboratory frame. *d* is the line of sight (LOS) unit vector. *M*₀ is the total nuclear reactant mass. *T*_{th} is the ion thermal temperature. $\sigma_{ij} = \langle (v_i - \langle v_i \rangle) \cdot (v_j - \langle v_j \rangle) \rangle$ is the element for $\hat{\sigma} = \text{Var}[\overrightarrow{v} \cdot \hat{d}]$

Since the matrix elements $\sigma_{ij} = \sigma_{ji}$ commute, the velocityvariance matrix^{*} is Hermitian; hence, it is diagonalizable.

$$T_{\text{apparent}}^{\text{Brysk}} = T_{\text{th}} + M_0 \cdot \left(\sigma'_{xx} \sin^2 \theta' \cos^2 \phi' + \sigma'_{yy} \sin^2 \theta' \sin^2 \phi' + \sigma'_{zz} \cos^2 \theta' \right)$$

The eigenvalues σ' are hot-spot residual kinetic energies (RKE_{HS}) along three rotated orthogonal axes.

Definition

$$\mathrm{RKE}_{\mathrm{HS}} = M_{\mathrm{HS}}\sigma'_{xx}/2 + M_{\mathrm{HS}}\sigma'_{yy}/2 + M_{\mathrm{HS}}\sigma'_{zz}/2$$

* K. M. Woo et. al., Phys. Plasmas <u>25</u>, 102710 (2018).

** H. Brysk, Plasma Physics <u>15</u> 611 (1973); the velocity variance term can be obtained by removing the isotropic flow assumption in Brysk's analysis.

Ion-temperature asymmetries in OMEGA experiments are mostly driven by mode 1

The presence of quasi-isotropic flows from even-*L* modes provides additional ion-temperature asymmetries

The *v.d* term in the mode-1 areal-density model* captures the ho R asymmetry**

The mode information is quantified by *T*_i and hot-spot shape asymmetries

ROCHESTER

3-D hot-spot reconstruction

A platform of three-dimensional (3-D) hot-spot reconstruction procedures has been developed to quantify 3-D effects of low modes in ICF implosion experiments

- A tomography method is developed to reconstruct the 3-D plasma emissivity.
- Procedures of 3-D analysis are developed by integrating 3-D hot-spot shape asymmetries with nuclear measurements including ion-temperature (T_i), flow, and areal-density (ρR) asymmetries.
- Residual kinetic energies (RKE's) are shown to be a driving factor causing low-mode implosion asymmetries.

The 3-D analysis will be applied to minimize the low-mode implosion asymmetry in our future work.

See Jim's talk in NO04.00009. See Kristen's talk in ZO04.00007.

Appendix

The major axis for mode 1 and prolate mode 2 can be reconstructed using its projection measured at two lines of sight

Appendix

The *v.d* term in the mode-1 areal-density (ρR) model is shown to capture the ρR variations in OMEGA experiments

Appendix

The 3-D plasma emissivity model is optimized* by minimizing the fitting error between its 2-D projections and experimental x-ray ima

