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Summary 

OMEGA direct-drive DT-layered implosions have achieved neutron yields up to 
3.1e14, and could be optimized to produce 4e14 (> 1.1kJ of fusion energy) 

• High fusion yields (3.1e14) on OMEGA have been demonstrated by increasing velocity to achieve high ion 

temperatures and by raising adiabats to maintain stability 

• Laser absorption has been enhanced by using Si-doped CH ablators and using the multipulse driver (MPD) 

• Yields up to 4e14 (fusion energy ≈ shell kinetic energy) are predicted when using shorter fill ages and more 

MPD pulse shape control 
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____________ 

The mapping model* is a useful design tool to uncover trends in the experimental 
database, identify degradation mechanisms and predict implosion performace 

. . 

YOChydro = degradation from hydrodynamic instabilities 

YOCl= 1 = degradation from target offset and laser mispointing 

YOCbeam = degradation from finite beam size 

������ = degradation from tritium decay, 3He build up, � particle 
damage to ice layer 

�.� � � � ����� 
� 

∝ ���� ∝ ∝
���� �� ������� 

* V. Gopalaswamy et al., Nature 565, 581 (2019). Assuming short DT fills and appropriate offsets, fusion yields can be enhanced by ** A. Lees et al.,Phys. Rev. Lett. (2021) 
YOC: Yield over clean increasing implosion velocity and improving both stability and illumination uniformity IFAR: In-flight aspect ratio 

CR: Convergence ratio 
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Thin-ice DT liner targets generate high yields by simultaneously boosting 
implosion velocity and adiabat 

DT liners are bigger, thinner than nominal 
high-performance targets like 90288 

MPD leads to effective “zooming”
������ ��� = ��� �� 
�������� = ��� �� 

Square pulse �� ���� ∝ Flattop pulse �� 
Double spike pulse 

• By increasing *��/��, targets can be imploded 
faster without increasing laser intensity 

• Implosion velocities ~650 km/s can be achieved 
with ~30 kJ of laser energy 

C. A. Williams et al, submitted Phys. Plasmas 2021 
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High-adiabat ablation fronts provide sufficient stabilization to survive the 
acceleration phase Rayleigh-Taylor instability (RTI) of ultrafast implosions 

Density & adiabat profiles at 2/3 convergence 

RT growth rate vs. wavenumber during acceleration phase 

Similar RT growth 
rates to nominal 
direct-drive 
implosions 

� ≈ �� for square 
pulse and � ≈ � for 
shaped pulse DT 
liners 
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Low fuel convergence at stagnation and heightened hot-spot temperatures 
provide added stability during deceleration 

Ablation velocity at hot-spot/shell interface RT growth rates during deceleration 

* R. Betti, M. Umansky, V. Lobatchev, V. Goncharov, and R. McCrory, 
Physics of Plasmas 8, 5257 (2001). 
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DT liners display unique properties, including hot-spot-dominated areal densities 
and higher compressive power than nominal implosions 

Ion temperature & density profiles at bangtime Average ion 
temperatures 
up to 8.7 keV 

Similar stagnation 
pressures to those 
of high-convergence 
implosions 

Typical �� distribution is 40% hot-spot, 60% cold shell 
DT liners are 60% hot-spot, 40% cold shell Ultrahigh implosion velocities leads to high pressures with 

less mass than nominal high-performance implosions 



Shots 102356, 102360 and 102363 were fielded on OMEGA on 11/2/2021 using two 
shaped pulses on CD and Si-doped targets 

Shot Number CD thickness 
(µm) 

CHSi thickness 
(µm) 

DT ice thickness 
(µm) 

Outer Diameter 
(µm) 

102356 7.2 0 33.7 1017.4 

102360 7.2 0 33.0 1015.6 

102363 2.3 5.6 33.1 1009.8 

102356 
102360 
102363 
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• 30.5 – 30.8 kJ delivered to target 
• Pulse shape control more difficult than full-bandwidth 

SSD 

• Difficulty constructing foot and steep ramp leads to 

shock mistiming and non-ideal adiabat gradient 



OMEGA shots 102356, 102360 and 102363 produced yields ranging from 2.6 x 
1014, 2.7 x 1014 and 3.1 x 1014 , the highest yields to-date at LLE 

*LILAC values given in 
brackets 

Shot 
Number 

Yield (1014) Predicted 
Yield (1014) 

Vimp (km/s) Areal 
Density 

(mg/cm2) 
102356 2.60 [9.85] 2.80 [682] [91.6] 
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102360 2.75 [8.24] 2.78 [662] [79.7] 
102363 3.12 [8.72] 3.10 [607] [111.0] 
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Summary/Conclusions 

OMEGA direct-drive DT-layered implosions have achieved neutron yields up to 
3.1e14, and could be optimized to produce 4e14 (> 1.1kJ of fusion energy) 

• High fusion yields (3.1e14) on OMEGA have been demonstrated by increasing velocity to achieve high ion 

temperatures and by raising adiabats to maintain stability 

• Laser absorption has been enhanced by using Si-doped CH ablators and using the multipulse driver (MPD) 

• Yields up to 4e14 (fusion energy ≈ shell kinetic energy) are predicted when using shorter fill ages and more 

MPD pulse shape control 
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Extra Content 
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High yields are predicted even in the free-fall model, which overestimates 
degradation 

• Free-fall line model assumes the following: 
1) RT growth is nonlinear from the onset of deceleration 

2) RT spikes encounter no resistance when they ingress on hot-spot (free fall) 

3) No fusion takes place within the RT spikes or bubbles (clean burn volume) 

Clean volume 

Free fall line = clean radius 

enclosed by 
free fall line 

1D hot-spot shell interface 

Free falling 
RT spikes 


