Mitigation of Inflationary Stimulated Raman Scattering with Laser Bandwidth

H. Wen
University of Rochester
Laboratory for Laser Energetics

63rd Annual Meeting of APS DPP
Pittsburgh, Pennsylvania
November 8-12, 2021
Summary

Laser bandwidth in the form of frequency modulation can mitigate inflationary stimulated Raman scattering

- Stimulated Raman scattering (SRS) can inhibit the performance of ICF implosions by redirecting laser energy into unwanted directions and generating hot electrons that preheat the target fuel.
- Inflationary SRS (ISRS) in inhomogeneous plasma occurs when electron trapping in the driven plasma wave creates a frequency shift that maintains phase matching over long distances, greatly enhancing the gain.
- Laser bandwidth enhances SRS when the scattered light follows the SRS resonance over a time long enough for electron trapping.
- Laser bandwidth mitigates ISRS by shortening the interaction time.

Broadband drivers in development at LLE (FLUX) have enough bandwidth to mitigate ISRS at ignition scale.
Collaborators

R.K. Follett, A.V. Maximov, and J.P. Palastro
Laboratory for Laser Energetics, University of Rochester
In an inhomogeneous plasma, stimulated Raman scattering is resonant over a finite interaction length.

A seed beam is amplified over a region where the frequency mismatch between the waves is close to zero \(\Delta \Omega(x) \equiv \omega_0 - \omega_1 - \omega_2(x) \approx 0 \), leading to a fixed amplification\(^*\).

\[\Delta \Omega(x) \approx \omega_0 - \omega_1 - \omega_2(x) \]

Particle trapping modifies the local Langmuir wave frequency, which increases the interaction length and consequently the linear gain.

A large linear gain can generate Langmuir waves capable of trapping electrons, initiating kinetic inflation.

Particle trapping modifies the local Langmuir wave frequency, which increases the interaction length and consequently the linear gain.

A large linear gain can generate Langmuir waves capable of trapping electrons, initiating kinetic inflation.*

Particle trapping modifies the local Langmuir wave frequency, which increases the interaction length and consequently the linear gain.

A large linear gain can generate Langmuir waves capable of trapping electrons, initiating kinetic inflation.*

Particle trapping modifies the local Langmuir wave frequency, which increases the interaction length and consequently the linear gain.

A large linear gain can generate Langmuir waves capable of trapping electrons, initiating kinetic inflation.

The transient gain is enhanced when the scattered light follows the SRS resonance.

![Graph showing n/n_c vs x with Low frequency pump and High frequency pump, and a plot of Fluid regime with Amplification factor (\(e^{G_R}\)) and x (c\(\omega_0^{-1}\)).]
The transient gain is enhanced when the scattered light follows the SRS resonance

This transient gain enhancement requires a delicate balancing of plasma and pump parameters.*

\[
\frac{d\Delta\omega}{dt} = -\frac{\omega_p c}{4\lambda_n}
\]

* H. Wen \textit{et al}, Phys. Plasmas 28, 042109 (2021)
The enhanced transient gain can trigger kinetic inflation

Seed Amplification

- Low frequency pump
- High frequency pump

9x larger amplification factor than that without kinetic inflation
The enhanced transient gain can trigger kinetic inflation

9x larger amplification factor than that without kinetic inflation
The transient gain is reduced when the scattered light propagates in the opposite direction of the SRS resonance.

A large bandwidth mitigates the transient gain enhancement of SRS.
The inflationary SRS threshold reaches a minimum at the bandwidth when the SRS gain enhancement is most likely to occur.

- Exponential density profile $L_n = 400 \, \mu m$
- $1D \, I_0 = 1.31 \times 10^{15} \, W/cm^2$, $2D \, I_0 = 2.24 \times 10^{15} \, W/cm^2$
Summary

Laser bandwidth in the form of frequency modulation can mitigate inflationary stimulated Raman scattering

- Stimulated Raman scattering (SRS) can inhibit the performance of ICF implosions by redirecting laser energy into unwanted directions and generating hot electrons that preheat the target fuel.
- Inflationary SRS (ISRS) in inhomogeneous plasma occurs when electron trapping in the driven plasma wave creates a frequency shift that maintains phase matching over long distances, greatly enhancing the gain.
- Laser bandwidth enhances SRS when the scattered light follows the SRS resonance over a time long enough for electron trapping.
- Laser bandwidth mitigates ISRS by shortening the interaction time.

Broadband drivers in development at LLE (FLUX) have enough bandwidth to mitigate ISRS at ignition scale.