Effects of Kilotesla-Level Magnetic Fields on Relativistic Laser–Plasma Interaction

K. Weichman
Pronouns: they/them
University of Rochester
Laboratory for Laser Energetics

63rd Annual Meeting of the APS Division of Plasma Physics
8 – 12 November 2021
Kilotesla-level applied magnetic fields introduce new possibilities for relativistic laser–plasma interaction

- Currently available magnetic fields appear “weak” by bulk metrics, yet are sufficiently strong to influence laser-plasma dynamics
- Laser plasmas with embedded magnetic fields do not always behave diamagnetically
- Applied magnetic fields can dramatically change plasma expansion
- Kilotesla or subkilotesla fields can enable new forms of direct laser acceleration-based heating
- Applied magnetic fields open the door to many additional phenomena

Collaborators

A. V. Arefiev, H. Mao, and F. N. Beg

J. P. Palastro

A. P. L. Robinson

M. Murakami and S. Fujioka

J. J. Santos

T. Toncian

T. Ditmire and H. Quevedo

Y. Shi

V. V. Ivanov
How strong are experimentally available magnetic fields?

- “Obvious” effects require strong magnetic fields
 - $B_0 > B_{\text{laser}}$
 - cyclotron resonance ($\omega_{ce} \gtrsim \omega_{\text{laser}}$)
 - direct magnetization ($\beta_e = \frac{8\pi n_e T_e}{B_0^2} < 1$)

How strong are experimentally available magnetic fields?

- “Obvious” effects require strong magnetic fields
 - $B_0 > B_{\text{laser}}$
 - cyclotron resonance ($\omega_{ce} \gtrsim \omega_{\text{laser}}$)
 - direct magnetization ($\beta_e = \frac{8\pi n_e T_e}{B_0^2} < 1$)

- State-of-the-art magnetic fields reach 100 T to 1 kT

- Compare to fs- to ps-duration pulses with $a_0 = \frac{|e| E_{\text{laser}}}{m_e c \omega_{\text{laser}}} \sim 1 - 3$:
 - $B_0/B_{\text{laser}} \lesssim 1/10$
 - $\omega_{ce}/\omega_{\text{laser}} \lesssim 1/10$
 - $\beta_e \gtrsim 20$

A kilotesla magnetic field is “weak” by bulk metrics, yet can still have a strong impact.

RCF: radiochromic film
A relativistic laser produced plasma is not always diamagnetic and can generate magnetic fields

\[B_{20} = 100 \, \text{T to} \, 1 \, \text{kT} \]

Opaque target

- 2-\(\mu\)m thick CH < \(\rho_L\)
- 0.1-\(\mu\)m preplasma scale length

Laser

- \(1 \times 10^{19} \, \text{W/cm}^2\)
- 100 fs FWHM
- \(\lambda = 0.8 \, \mu\)m
- y polarized

Simulations

- 1-D and 2-D
- \(EPOCH\) PIC code

- (Hypothetical) diamagnetic picture
 - laser generates hot plasma
 - current in hot plasma reduces the applied magnetic field

\[B_z = 0.8 \, \mu\text{m} \]

PIC: particle in cell
Surface field generation is an overshoot of the diamagnetic effect

- Cyclotron rotation of hot electrons originating at the laser–plasma interface leads to a net transverse current
- Hot electron current is screened by cold population within the target, allowing it to overshoot the usual diamagnetic limit
- The magnetic-field estimate based on cyclotron rotation agrees well with observed fields (for $\Delta x < \rho_L$)

Surface magnetic field generation is a kinetic effect.
Surface magnetic-field generation can have surprising consequences

- Microtube implosions generate and amplify magnetic fields
 - Microtube target
 - 3-µm thick CH shell
 - 3-µm radius central void
 - four lasers
 - Lasers
 - 1×10^{21} W/cm²
 - 15 µm FWHM
 - 25 fs FWHM
 - $\lambda = 0.8$ µm
 - y polarized

Any magnetic field present can be amplified by the implosion.

The sign of the amplified field can be reversed due to surface magnetic-field generation.

Seed magnetic fields enable strong magnetic-field generation.

\[B_{z0} = 3 \text{ kT} \]

Plasma expansion and sheaths
Target-normal applied magnetic fields can enhance sheath-based ion acceleration

Opaque target:
- 5-μm thick CH
- 1.5-μm-preplasma scale length
- 3-D simulation

Laser:
- 2×10^{19} W/cm2
- 3 μm FWHM
- 150 fs FWHM
- $\lambda = 1$ μm
- y polarized

Target-normal applied magnetic fields can enhance sheath-based ion acceleration

Opaque target
5-μm thick CH
1.5-μm preplasma scale length
3-D simulation

Laser
2 × 10^{19} W/cm^2
3 μm FWHM
150 fs FWHM
λ = 1 μm
y polarized

Target thickness ~ Larmor radius substantially increases ion energy and number

\[\theta = 1 \mu m \]

\[\text{y polarized} \]

Proton
Carbon

0 T
0°
10°

Test electron trajectories

(Eventual) magnetization of sheath induces ion focusing

Magnetization: \(\frac{E_{\text{sheath}}}{B_0} \sim \sqrt{\frac{4\pi n_e T_e}{B_0^2}} \sim \sqrt{\beta_e} \lesssim 1 \)

- Initially \(\beta_e > 1 \), but \(n_e \) (and \(\beta_e \)) drop during plasma expansion
- Change in \(E_\perp \) leads to ion focusing

A target-normal magnetic field produces a focusing ion source with enhanced energy and numbers.

Direct laser acceleration and plasma heating
Applied magnetic fields enable new regimes in direct laser acceleration

A transverse magnetic field \((B_z)\) with \(y\)-polarized laser enables electron energy retention

- **Partial cyclotron rotation**
 - initially cold plasma
 - pulse duration < cyclotron period
 - \(\gamma_{\text{final}} \lesssim a_0\)

- **Magnetically assisted kicks**
 - initially hot plasma
 - pulse duration \(\gg\) cyclotron period
 - \(\gamma_{\text{final}} \sim a_0^{3/2} (\omega_{\text{laser}}/\omega_{\text{ce}})^{1/2}\)

These acceleration strategies can be combined.

Magnetized direct laser acceleration can create a relativistic, underdense thermal plasma.

\[B_{z0} = 100 \text{ to } 500 \text{T} \]

Magnetic fields enable relativistic plasma generation in an otherwise difficult-to-access regime.

Femtosecond laser
- \(a_0 = 5 \)
- 20 fs FWHM

Picosecond laser
- \(a_0 = 1 \)
- 0.8 ps FWHM

Both lasers
- \(10^{-3} \text{ to } 10^{-2} n_c \)
- 100-\(\mu \text{m} \)-thick-H
- \(\lambda = 1 \mu\text{m} \)
- 100 \(\mu \text{m} \) FWHM

Relativistic energy retained in plasma

Magnetic fields enable relativistic plasma generation in an otherwise difficult-to-access regime.
Magnetized relativistic laser-plasma physics offers many additional phenomena

A few examples

Magnetic-field amplification in a solid by return current*

Electromagnetic wave generation during plasma expansion into neutral gas**

Multiple cycles of ponderomotive energy gain (e.g., by a flying focus pulse)

Kilotesla-level applied magnetic fields introduce new possibilities for relativistic laser–plasma interaction

- Currently available magnetic fields appear “weak” by bulk metrics, yet are sufficiently strong to influence laser-plasma dynamics
- Laser plasmas with embedded magnetic fields do not always behave diamagnetically
- Applied magnetic fields can dramatically change plasma expansion
- Kilotesla or subkilotesla fields can enable new forms of direct laser acceleration-based heating
- Applied magnetic fields open the door to many additional phenomena

Backup slides
Scale comparison for 1 kT

Typical parameters for modestly relativistic laser-plasma

<table>
<thead>
<tr>
<th>Laser parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser amplitude</td>
<td>$a_0 = \frac{</td>
</tr>
<tr>
<td>Pulse duration</td>
<td>100 fs – 10 ps</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plasma parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot electron temperature</td>
<td>$T_e \sim \text{MeV}$</td>
</tr>
<tr>
<td>Plasma density (hot part)</td>
<td>$n_e \sim 10^{-4} - 1 \times n_{cr}$</td>
</tr>
<tr>
<td></td>
<td>$\sim 10^{17} - 10^{21} \text{ cm}^{-3}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Laser-plasma scales</th>
<th>Magnetic field scales</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser frequency</td>
<td>Cyclotron frequency</td>
<td>$\omega_{laser}/\omega_{ce} \gtrsim 10$</td>
</tr>
<tr>
<td>Laser field B_{laser}</td>
<td>Applied field B_0</td>
<td>$B_{laser}/B_0 \gtrsim 10$</td>
</tr>
<tr>
<td>Thermal pressure</td>
<td>Magnetic field pressure</td>
<td>$\beta_e = 8\pi n_e T_e/B_0^2 \sim 20 - 500$</td>
</tr>
<tr>
<td>Scale of electron motion</td>
<td>Larmor radius ρ_L</td>
<td>$\rho_L/l \sim 1 - 10$</td>
</tr>
</tbody>
</table>
Surface magnetic field generation

\[B_{z0} = 1 \text{kT} \] generates \(> 10 \text{kT} \)

\[\frac{B_z}{B_0} - 1 \] (1000 T)

Strong magnetic field generation is due to cyclotron rotation of hot electrons in target

Estimate based on momentum rotation in target \((\Delta x < \rho_L) \)

\[\frac{B_{\text{gen}}}{B_{\text{seed}}} \sim -2\pi \frac{\Delta x}{\lambda_{\text{laser}}} \]

\[\Delta x \sim \rho_L \]

Surface magnetic field generation can have surprising consequences

Microtube implosions generate and amplify magnetic fields

Microtube target
- 3 μm thick CH shell
- 3 μm radius central void
- 4 lasers

Lasers
- 1x10^{21} W/cm²
- 15 μm FWHM
- 25 fs FWHM
- λ = 0.8 μm
- y-polarized

Initially unmagnetized \((B_{z0} = 0)\) case
- Asymmetry provides seed magnetic field
- \(B\) is amplified by electron current after ions reach center \((E \times B)\)

Early (electron) \(t < t_c\)
Later (ion) \(t \approx t_c\)

Any magnetic field present can be amplified by the implosion

Polarity of amplified field is sensitive to parameters

Amplification of surface field

Circular case

- **Initial** $t = 15$ fs
- **Implosion** $t = t_c$
- **Explosion phase** $t = t_c + 15$ fs, $t = t_c + 50$ fs

When surface magnetic field is unstable, it can be amplified in lieu of the seed

- **Unstable**
 - Circular $w_0 = 15$ µm
- **Stable**
 - Square $w_0 = 15$ µm

Transverse magnetic fields can also affect target expansion

\[B_{z0} \gtrsim 1 \, kT \]

Opaque target
- 2 \(\mu m \) thick CH target \(\gtrsim \rho_L \)
- 0.1 \(\mu m \) preplasma scale length
- 2D simulation

Laser
- 1x10^{19} \text{ W/cm}^2
- 100 fs FWHM
- \(\lambda = 0.8 \, \mu m \)
- \(y \)-polarized

Unusual: acceleration from the front surface can exceed the rear surface

Deflection from laser axis

Magnetized direct laser acceleration can create relativistic, underdense thermal plasma

\[B_{z0} = 100 - 500 \, T \]

Long pulse

\[a_0 = 5 \]

20 fs FWHM

fs laser

\[\lambda = 1 \, \mu m \]

Both lasers

\[100 \, \mu m \text{ FWHM} \]

\[a_0 = 1 \]

0.8 ps FWHM

ps laser

\[\lambda = 1 \, \mu m \]

Plasma

\[10^{-3} - 10^{-2} n_{cr} \]

100+ \(\mu m \) thick H

\[100+ \, \mu m \text{ thick H} \]

Both lasers

\[\lambda = 1 \, \mu m \]

2D simulation

Magnetic fields enable relativistic plasma generation in an otherwise difficult-to-access regime
Heating mechanism is robust to electron motion in the third direction

With $p_z \neq 0$

$$p_x = |p| \cos \theta$$

$$\frac{d\theta}{ds} = \sqrt{1 - \frac{p_z^2}{p_y^2 + p_z^2}} \cdot \frac{\omega_c}{\omega_0} + \frac{1}{\gamma (1 - \beta \cos \theta)} \frac{da}{ds}$$

$$\frac{dy}{ds} = \sqrt{1 - \frac{p_z^2}{p_y^2 + p_z^2}} \cdot \frac{\beta \sin \theta}{1 - \beta \cos \theta} \frac{da}{ds}$$

Final average energy: 0.9 MeV

Motion in third direction preserves θ during acceleration, but reduces energy gain
Heating is robust over $10^{-3} - 10^{-2} n_{cr}$, but breaks down for higher density

- Lasers substantially modify density profile for $10^{-3} n_{cr}$, but this does not appear to affect spectrum.
- At lower density (e.g. $10^{-4} n_{cr}$), have $\omega_p < \omega_c$, which changes dynamics (based on 1D simulations).
- At higher density, charge separation E visibly interrupts cyclotron rotation.
1D simulations predict even higher energy can be achieved in mm plasma, including with lower fields.

\[B_0 = 500 \text{T} \]

\[B_0 = 200 \text{T} \] (longer pulse duration)

Magnetically assisted DLA may be experimentally realizable using easily accessible plasma conditions.