Effects of Kilotesla-Level Magnetic Fields on Relativistic Laser–Plasma Interaction

K. Weichman Pronouns: they/them University of Rochester Laboratory for Laser Energetics

63rd Annual Meeting of the APS Division of Plasma Physics 8 – 12 November 2021

Summary

Kilotesla-level applied magnetic fields introduce new possibilities for relativistic laser-plasma interaction

- Currently available magnetic fields appear "weak" by bulk metrics, yet are sufficiently strong to influence laser-plasma dynamics
- Laser plasmas with embedded magnetic fields do not always behave diamagnetically
- Applied magnetic fields can dramatically change plasma expansion
- Kilotesla or subkilotesla fields can enable new forms of direct laser acceleration-based heating
- Applied magnetic fields open the door to many additional phenomena

Near-term experimentally relevant magnetic fields enable new, useful phenomena in relativistic laser–plasma interactions.

LLE

Collaborators

How strong are experimentally available magnetic fields?

- "Obvious" effects require strong magnetic fields
 - $B_0 > B_{\text{laser}}$
 - cyclotron resonance ($\omega_{ce} \gtrsim \omega_{laser}$)
 - direct magnetization ($\beta_e = \frac{8\pi n_e T_e}{B_0^2} < 1$)

TC15813a

Au

10 μ m mesh

Cu

2 mm 4.5 mm

V. V. Ivanov *et al.*, Rev. Sci. Instrum. <u>89,</u> 033504 (2018).

Longitudinal

B field

C. Goyon et al., Phys. Rev. E 95, 033208 (2017).

SiO₂

80 mm

RCF

G. Fiksel *et al.*, Rev. Sci. Instrum. <u>86</u>, 016105 (2015).

J. J. Santos *et al.*, Phys. Plasmas <u>25</u>, 056705 (2018).

Backlighter beam

Laser driving the B field

y $\sqrt{}$

How strong are experimentally available magnetic fields?

- "Obvious" effects require strong magnetic fields
 - $B_0 > B_{\text{laser}}$
 - cyclotron resonance ($\omega_{ce} \gtrsim \omega_{laser}$)
 - direct magnetization ($\beta_e = \frac{8\pi n_e T_e}{B_0^2} < 1$)
- State-of-the art magnetic fields reach 100 T to 1 kT
- Compare to fs- to ps-duration pulses with $a_0 = \frac{|e|E_{\text{laser}}}{m_e c \omega_{\text{laser}}} \sim 1 3$:
 - $-B_0/B_{\text{laser}} \lesssim 1/10$
 - $\omega_{\rm ce}/\omega_{\rm laser} \lesssim 1/10$
 - $-\beta_{\rm e}\gtrsim 20$

A kilotesla magnetic field is "weak" by bulk metrics, yet can still have a strong impact.

V. V. Ivanov *et al.*, Rev. Sci. Instrum. <u>89</u>, 033504 (2018).

Cu

2 mm 4.5 mm

Au

Backlighter

Laser driving

the B field

TC15813

beam

10 μ m mesh

Longitudinal

B field

C. Goyon et al., Phys. Rev. E 95, 033208 (2017).

SiO₂

80 mm

RCF

G. Fiksel *et al.*, Rev. Sci. Instrum. <u>86,</u> 016105 (2015).

J. J. Santos *et al.*, Phys. Plasmas <u>25</u>, 056705 (2018).

RCF: radiochromic film

A relativistic laser produced plasma is not always diamagnetic and can generate magnetic fields

Opaque targetLaserSim $2-\mu m$ thick CH < ρ_L 1×10^{19} W/cm²1-D a $0.1-\mu m$ preplasma100 fs FWHMEPOscale length $\lambda = 0.8 \ \mu m$ γ polarized

Simulations

1-D and 2-D EPOCH PIC code

- (Hypothetical) diamagnetic picture
 - laser generates hot plasma
 - current in hot plasma reduces the applied magnetic field

Surface field generation is an overshoot of the diamagnetic effect

- Cyclotron rotation of hot electrons originating at the laser– plasma interface leads to a net transverse current
- Hot electron current is screened by cold population within the target, allowing it to overshoot the usual diamagnetic limit
- The magnetic-field estimate based on cyclotron rotation agrees well with observed fields (for $\Delta x < \rho_{\rm L}$)

Surface magnetic field generation is a kinetic effect.

Surface magnetic-field generation can have surprising consequences

- Microtube implosions generate and amplify magnetic fields
- Microtube target ٠
 - 3- μ m thick CH shell
 - 3- μ m radius central void
 - four lasers
- Lasers
 - $-1 \times 10^{21} \, \text{W/cm}^2$
 - $-15 \,\mu m \, FWHM$
 - 25 fs FWHM
 - $-\lambda = 0.8 \,\mu \text{m}$
 - y polarized

M. Murakami et al., Sci. Rep. 10, 16653 (2020). K. Weichman et al., Appl. Phys. Lett. 117, 244101 (2020).

The sign of the amplified field can be reversed due to surface magnetic-field generation

Seed magnetic fields enable strong magnetic-field generation $B_{z0} = 3 \text{ kT}$ (•) **During amplification** Early in time $\Delta \mathbf{x}$ $t = t_{\rm C} + 50 \, {\rm fs}$ $t = t_{c} + 15 \text{ fs}$ $t = t_c$ 100 20 20 60 fs 2*R*₀ 2 *y* (*µ*m) **B**_z (kT) **Amplification** 0 0 0 0 of seed field -2 -20 -20 -100 100 20 20 50 fs $\Delta \mathbf{x}$ 2 Lasers $\begin{array}{c} B_z & (\mu T) \\ (kT) & \lambda \end{array}$ Amplification 0 of surface field 0 0 $2R_0$ -2 -20 -20 -100 -2 -2 2 2 2 0 -2 0 Ω $x(\mu m)$ $x(\mu m)$ $x(\mu m)$ TC15816a TC15818

K. Weichman et al., Appl. Phys. Lett. 117, 244101 (2020).

Plasma expansion and sheaths

Target-normal applied magnetic fields can enhance sheath-based ion acceleration

TC15819

Opaque target

5- μ m thick CH 1.5- μ m-preplasma scale length

3-D simulation

Laser

 2×10^{19} W/cm² 3 μ m FWHM 150 fs FWHM $\lambda = 1 \mu$ m y polarized

K. Weichman et al., Sci. Rep. <u>10</u>, 18966 (2020).

Target-normal applied magnetic fields can enhance sheath-based ion acceleration

TC15819

Opaque target

5- μ m thick CH 1.5- μ m-preplasma scale length

3-D simulation

Laser

 $2 \times 10^{19} \text{ W/cm}^2$ 3 μ m FWHM 150 fs FWHM $\lambda = 1 \mu$ m y polarized

(Eventual) magnetization of sheath induces ion focusing

A target-normal magnetic field produces a focusing ion source with enhanced energy and numbers.

K. Weichman et al., Sci. Rep. 10, 18966 (2020).

Direct laser acceleration and plasma heating

Applied magnetic fields enable new regimes in direct laser acceleration

A transverse magnetic field (B_{z0} with y-polarized laser) enables electron energy retention

- Partial cyclotron rotation
 - initially cold plasma
 - pulse duration < cyclotron period
 - $\gamma_{\text{final}} \lesssim a_0$

These acceleration strategies can be combined.

- Magnetically assisted kicks
 - initially hot plasma
 - pulse duration \gg cyclotron period
 - $\gamma_{\rm final} \sim a_0^{3/2} \, (\omega_{\rm laser}/\omega_{\rm ce})^{1/2}$

A. P. L. Robinson and A. V. Arefiev, Phys. Plasmas <u>27</u>, 023110 (2020). A. Arefiev, Z. Gong, and A. P. L. Robinson, Phys. Rev. E <u>101</u>, 043201 (2020).

Magnetized direct laser acceleration can create a relativistic, underdense thermal plasma

Magnetized relativistic laser-plasma physics offers many additional phenomena

p_v

V

TC15828

* Y. Shi et al., New J. Phys. 22, 073067 (2020). **H. Mao et al., Phys. Rev. E 103, 023209 (2021).

Kilotesla-level applied magnetic fields introduce new possibilities for relativistic laser-plasma interaction

- Currently available magnetic fields appear "weak" by bulk metrics, yet are sufficiently strong to influence laser-plasma dynamics
- Laser plasmas with embedded magnetic fields do not always behave diamagnetically
- Applied magnetic fields can dramatically change plasma expansion
- Kilotesla or subkilotesla fields can enable new forms of direct laser acceleration-based heating
- Applied magnetic fields open the door to many additional phenomena

Near-term experimentally relevant magnetic fields enable new, useful phenomena in relativistic laser–plasma interactions.

LLE

Backup slides

Scale comparison for 1 kT

Typical parameters for modestly relativistic laser-plasma

Laser parameters	Value	Plasma parameters	Value
Laser amplitude	$a_0 = e E_0/m_e c\omega \sim 1 - 3 \ (\sim 10^{19} \ { m W}/cm^2)$	Hot electron temperature	$T_e \sim { m MeV}$
Pulse duration	100 fs – 10 ps	Plasma density (hot part)	$n_e \sim 10^{-4} - 1 \; n_{cr} \ \sim 10^{17} - 10^{21} { m cm}^{-3}$

Laser-plasma scales	Magnetic field scales	Comparison
Laser frequency	Cyclotron frequency	$\omega_{laser}/\omega_{ce} \gtrsim 10$
Laser field B _{laser}	Applied field B_0	$B_{laser}/B_0 \gtrsim 10$
Thermal pressure	Magnetic field pressure	$\beta_e = 8\pi n_e T_e / B_0^2 \sim 20 - 500$
Scale of electron motion I	Larmor radius ρ_L	$ ho_L/l\sim 1-10$

UR LLE

Surface magnetic field generation

K. Weichman, *et al.*, New J Phys **22**, 113009 ₂₁

Surface magnetic field generation can have surprising consequences

Microtube implosions generate and amplify magnetic fields

M. Murakami, *et al.*, Sci Rep **10**, 18966

K. Weichman, et al., Appl Phys Lett 117, 244101 22

Polarity of amplified field is sensitive to parameters

K. Weichman, et al., Appl Phys Lett **117**, 244101 ₂₃

Transverse magnetic fields can also affect target expansion

2D simulation

ROCHESTER

Magnetized direct laser acceleration can create relativistic, underdense thermal plasma

otherwise difficult-to-access regime

100+ μm thick H

Heating mechanism is robust to electron motion in the third direction

Motion in third direction preserves θ during acceleration, but reduces energy gain

Heating is robust over $10^{-3} - 10^{-2} n_{cr}$, but breaks down for higher density

- Lasers substantially modify density profile for $10^{-3} n_{cr}$, but this does not appear to affect spectrum
- At lower density (e.g. $10^{-4} n_{cr}$), have $\omega_p < \omega_c$, which changes dynamics (based on 1D simulations)
- At higher density, charge separation *E* visibly interrupts cyclotron rotation

1D simulations predict even higher energy can be achieved in mm plasma, including with lower fields

Magnetically assisted DLA may be experimentally realizable using easily accessible plasma conditions

