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Summary

Kilotesla-level applied magnetic fields introduce new possibilities 
for relativistic laser–plasma interaction

• Currently available magnetic fields appear “weak” by bulk metrics, yet are sufficiently strong 
to influence laser-plasma dynamics

• Laser plasmas with embedded magnetic fields do not always behave diamagnetically

• Applied magnetic fields can dramatically change plasma expansion

• Kilotesla or subkilotesla fields can enable new forms of direct laser acceleration-based heating

• Applied magnetic fields open the door to many additional phenomena

Near-term experimentally relevant magnetic fields enable new, 
useful phenomena in relativistic laser–plasma interactions.
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How strong are experimentally available magnetic fields?

• “Obvious” effects require strong magnetic fields
－ 𝑩𝑩𝟎𝟎 > 𝑩𝑩𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥

－ cyclotron resonance (𝝎𝝎𝐜𝐜𝐥𝐥 ≳ 𝝎𝝎𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥)

－ direct magnetization (𝜷𝜷𝒆𝒆 = 𝟖𝟖𝟖𝟖𝒏𝒏𝐥𝐥𝑻𝑻𝐥𝐥
𝑩𝑩𝟎𝟎𝟐𝟐

< 𝟏𝟏)

V. V. Ivanov et al., Rev. Sci. Instrum. 89, 
033504 (2018).

G. Fiksel et al., Rev. Sci. Instrum. 86, 
016105 (2015).

____________
RCF: radiochromic film C. Goyon et al., Phys. Rev. E 95, 033208 (2017).

J. J. Santos et al., Phys. Plasmas 25, 
056705 (2018).
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How strong are experimentally available magnetic fields?

• “Obvious” effects require strong magnetic fields
－ 𝑩𝑩𝟎𝟎 > 𝑩𝑩𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥

－ cyclotron resonance (𝝎𝝎𝐜𝐜𝐥𝐥 ≳ 𝝎𝝎𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥)

－ direct magnetization (𝜷𝜷𝒆𝒆 = 𝟖𝟖𝟖𝟖𝒏𝒏𝐥𝐥𝑻𝑻𝐥𝐥
𝑩𝑩𝟎𝟎𝟐𝟐

< 𝟏𝟏)

• State-of-the art magnetic fields reach 100 T to 1 kT

• Compare to fs- to ps-duration pulses with 𝒂𝒂𝟎𝟎 = 𝒆𝒆 𝑬𝑬𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥
𝒎𝒎𝐥𝐥𝒄𝒄𝝎𝝎𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥

∼ 𝟏𝟏 − 𝟑𝟑:

－ 𝑩𝑩𝟎𝟎/𝑩𝑩𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 ≲ 𝟏𝟏/𝟏𝟏𝟎𝟎
－ 𝝎𝝎𝐜𝐜𝐥𝐥/𝝎𝝎𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 ≲ 𝟏𝟏/𝟏𝟏𝟎𝟎
－ 𝜷𝜷𝐥𝐥 ≳ 𝟐𝟐𝟎𝟎

A kilotesla magnetic field is “weak” by bulk 
metrics, yet can still have a strong impact.

____________
RCF: radiochromic film

G. Fiksel et al., Rev. Sci. Instrum. 86, 
016105 (2015).

C. Goyon et al., Phys. Rev. E 95, 033208 (2017).
J. J. Santos et al., Phys. Plasmas 25, 
056705 (2018).

V. V. Ivanov et al., Rev. Sci. Instrum. 89, 
033504 (2018).
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A relativistic laser produced plasma is not always diamagnetic 
and can generate magnetic fields

____________
K. Weichman et al., New J. Phys. 22, 113009 (2020).
PIC: particle in cell

1 × 1019 W/cm2

100 fs FWHM
𝝀𝝀 = 0.8 𝝁𝝁m
y polarized

Bz0 = 100 T to 1 kT Opaque target

2-𝝁𝝁m thick CH < 𝝆𝝆𝑳𝑳
0.1-𝝁𝝁m preplasma
scale length

Laser

1-D and 2-D 
EPOCH PIC code

Simulations

• (Hypothetical) diamagnetic picture
－ laser generates hot plasma 
－ current in hot plasma reduces the applied magnetic field



7

Surface field generation is an overshoot of the diamagnetic effect

• Cyclotron rotation of hot electrons originating at the laser–
plasma interface leads to a net transverse current

• Hot electron current is screened by cold population within the 
target, allowing it to overshoot the usual diamagnetic limit

• The magnetic-field estimate based on cyclotron rotation 
agrees well with observed fields (for 𝚫𝚫𝒙𝒙 < 𝝆𝝆𝐋𝐋) 

Surface magnetic field generation is a kinetic effect.
____________
K. Weichman et al., New J. Phys. 22, 113009 (2020).
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Surface magnetic-field generation can have surprising consequences

• Microtube implosions generate and amplify magnetic fields

• Microtube target
－ 3-𝝁𝝁m thick CH shell
－ 3-𝝁𝝁m radius central void
－ four lasers

• Lasers
－ 1 × 1021 W/cm2

－ 15 𝝁𝝁m FWHM
－ 25 fs FWHM
－ 𝝀𝝀 = 0.8 𝝁𝝁m
－ y polarized

____________
M. Murakami et al., Sci. Rep. 10, 16653 (2020).
K. Weichman et al., Appl. Phys. Lett. 117, 244101 (2020).

Laser asymmetry provides 
seed magnetic field

Initially unmagnetized (Bz0 = 0) case

Any magnetic field present can be amplified by the implosion.

B is amplified by electron current 
after ions reach center (E × B)

2-D PIC 
simulation
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The sign of the amplified field can be reversed due to surface 
magnetic-field generation

Seed magnetic fields enable strong magnetic-field generation

Bz0 = 3 kT

Amplification 
of seed field

Amplification 
of surface field

____________
K. Weichman et al., Appl. Phys. Lett. 117, 244101 (2020).
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Plasma expansion and sheaths
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Target-normal applied magnetic fields can enhance 
sheath-based ion acceleration

____________
K. Weichman et al., Sci. Rep. 10, 18966 (2020).

5-𝝁𝝁m thick CH
1.5-𝝁𝝁m-preplasma
scale length

2 × 1019 W/cm2

3 𝝁𝝁m FWHM
150 fs FWHM
𝝀𝝀 = 1 𝝁𝝁m
y polarized3-D simulation

Bx0 = 2 kT

Opaque target Laser
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Target-normal applied magnetic fields can enhance 
sheath-based ion acceleration

Target thickness ~ Larmor radius 
substantially increases ion energy and number

2 × 1019 W/cm2

3 𝝁𝝁m FWHM
150 fs FWHM
𝝀𝝀 = 1 𝝁𝝁m
y polarized

Opaque target Laser

3-D simulation

Bx0 = 2 kT

𝒑𝒑𝒙𝒙

𝒑𝒑⊥𝜽𝜽⊥

5-𝝁𝝁m thick CH
1.5-𝝁𝝁m-preplasma
scale length

____________
K. Weichman et al., Sci. Rep. 10, 18966 (2020).
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(Eventual) magnetization of sheath induces ion focusing

• Initially 𝜷𝜷𝐥𝐥 > 1, but 𝒏𝒏𝐥𝐥 (and 𝜷𝜷𝐥𝐥) drop during plasma expansion

• Change in E⊥ leads to ion focusing

Magnetization: 𝑬𝑬𝐥𝐥𝐬𝐬𝐥𝐥𝐥𝐥𝐬𝐬𝐬𝐬
𝑩𝑩𝟎𝟎

~ 𝟒𝟒𝟖𝟖𝒏𝒏𝐥𝐥𝑻𝑻𝐥𝐥
𝑩𝑩𝟎𝟎
𝟐𝟐 ∼ 𝜷𝜷𝐥𝐥 ≲ 1

Early

A target-normal magnetic field produces a focusing ion source with enhanced energy and numbers.

(unmagnetized 
sheath)

Later
(magnetized 

sheath)

____________
K. Weichman et al., Sci. Rep. 10, 18966 (2020).
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Direct laser acceleration and plasma heating
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Applied magnetic fields enable new regimes in direct laser acceleration

• Partial cyclotron rotation
－ initially cold plasma
－ pulse duration < cyclotron period
－ 𝜸𝜸𝐟𝐟𝐟𝐟𝐟𝐟𝐥𝐥𝐥𝐥 ≲ 𝒂𝒂𝟎𝟎

These acceleration strategies can be combined.
____________
A. P. L. Robinson and A. V. Arefiev, Phys. Plasmas 27, 023110 (2020).
A. Arefiev, Z. Gong, and A. P. L. Robinson, Phys. Rev. E 101, 043201 (2020).

• Magnetically assisted kicks
－ initially hot plasma
－ pulse duration ≫ cyclotron period
－ 𝜸𝜸𝐟𝐟𝐟𝐟𝐟𝐟𝐥𝐥𝐥𝐥 ~ 𝒂𝒂𝟎𝟎

𝟑𝟑/𝟐𝟐 𝝎𝝎𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥/𝝎𝝎𝐜𝐜𝐥𝐥
𝟏𝟏/𝟐𝟐

A transverse magnetic field (Bz0 with y-polarized laser) enables electron energy retention
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Magnetized direct laser acceleration can create a relativistic, 
underdense thermal plasma

Magnetic fields enable relativistic plasma generation 
in an otherwise difficult-to-access regime.

Bz0 = 100 to 500 T

Relativistic energy retained in plasma

𝒂𝒂𝟎𝟎 = 𝟓𝟓
20 fs FWHM

𝟏𝟏𝟎𝟎−𝟑𝟑 𝐬𝐬𝐭𝐭 𝟏𝟏𝟎𝟎−𝟐𝟐 𝒏𝒏𝐜𝐜
100-𝝁𝝁m−thick-H 2-D simulationPlasma

Femtosecond
laser

𝟏𝟏𝟎𝟎𝟎𝟎 𝝁𝝁m FWHM
𝝀𝝀 = 𝟏𝟏 𝝁𝝁m

𝒂𝒂𝟎𝟎 = 𝟏𝟏
0.8 ps FWHM

Picosecond
laser

Both lasers
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Magnetized relativistic laser-plasma physics offers many additional phenomena

____________
* Y. Shi et al., New J. Phys. 22, 073067 (2020).
**H. Mao et al., Phys. Rev. E 103, 023209 (2021).

Magnetic-field 
amplification in a solid by 

return current*

A few examples

Electromagnetic wave 
generation during plasma 

expansion into neutral gas**

Multiple cycles of 
ponderomotive energy gain 

(e.g., by a flying focus pulse)
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Summary/Conclusions

Kilotesla-level applied magnetic fields introduce new possibilities 
for relativistic laser–plasma interaction

• Currently available magnetic fields appear “weak” by bulk metrics, yet are sufficiently strong 
to influence laser-plasma dynamics

• Laser plasmas with embedded magnetic fields do not always behave diamagnetically

• Applied magnetic fields can dramatically change plasma expansion

• Kilotesla or subkilotesla fields can enable new forms of direct laser acceleration-based heating

• Applied magnetic fields open the door to many additional phenomena

Near-term experimentally relevant magnetic fields enable new, 
useful phenomena in relativistic laser–plasma interactions.
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Scale comparison for 1 kT

Typical parameters for modestly relativistic laser-plasma

Laser parameters Value

Laser amplitude 𝒂𝒂𝟎𝟎 = 𝒆𝒆 𝑬𝑬𝟎𝟎/𝒎𝒎𝒆𝒆𝐜𝐜𝐜𝐜 ∼ 𝟏𝟏− 𝟑𝟑
(~𝟏𝟏𝟎𝟎𝟏𝟏𝟏𝟏 𝐖𝐖/𝒄𝒄𝒎𝒎𝟐𝟐)

Pulse duration 100 fs – 10 ps

Plasma parameters Value

Hot electron temperature 𝑻𝑻𝒆𝒆 ∼ 𝐌𝐌𝐥𝐥𝐌𝐌

Plasma density (hot part) 𝒏𝒏𝒆𝒆 ∼ 𝟏𝟏𝟎𝟎−𝟒𝟒 − 𝟏𝟏 𝒏𝒏𝒄𝒄𝒄𝒄
∼ 𝟏𝟏𝟎𝟎𝟏𝟏𝟏𝟏 − 𝟏𝟏𝟎𝟎𝟐𝟐𝟏𝟏 𝐜𝐜𝒎𝒎−𝟑𝟑

Laser-plasma scales Magnetic field scales Comparison

Laser frequency Cyclotron frequency 𝝎𝝎𝒍𝒍𝒂𝒂𝒍𝒍𝒆𝒆𝒄𝒄/𝝎𝝎𝒄𝒄𝒆𝒆 ≳ 𝟏𝟏𝟎𝟎

Laser field 𝑩𝑩𝒍𝒍𝒂𝒂𝒍𝒍𝒆𝒆𝒄𝒄 Applied field 𝑩𝑩𝟎𝟎 𝑩𝑩𝒍𝒍𝒂𝒂𝒍𝒍𝒆𝒆𝒄𝒄/𝑩𝑩𝟎𝟎 ≳ 𝟏𝟏𝟎𝟎

Thermal pressure Magnetic field pressure 𝜷𝜷𝒆𝒆 = 𝟖𝟖𝟖𝟖𝒏𝒏𝒆𝒆𝑻𝑻𝒆𝒆/𝑩𝑩𝟎𝟎
𝟐𝟐~𝟐𝟐𝟎𝟎 − 𝟓𝟓𝟎𝟎𝟎𝟎

Scale of electron motion 𝐥𝐥 Larmor radius 𝝆𝝆𝑳𝑳 𝝆𝝆𝑳𝑳/𝐥𝐥 ~𝟏𝟏 − 𝟏𝟏𝟎𝟎



21

Surface magnetic field generation

𝐁𝐁𝐳𝐳𝟎𝟎 = 𝟏𝟏 𝐤𝐤𝐤𝐤 generates > 10 kT Strong magnetic field generation is due to cyclotron 
rotation of hot electrons in target

Solid

Estimate based on momentum 
rotation in target (Δ𝑥𝑥 < 𝜌𝜌𝐿𝐿)
𝐵𝐵𝑔𝑔𝑔𝑔𝑔𝑔
𝐵𝐵𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠

~ − 2𝜋𝜋
Δ𝑥𝑥

𝜆𝜆𝑙𝑙𝑙𝑙𝑠𝑠𝑔𝑔𝑙𝑙

Δ𝑥𝑥~𝜌𝜌𝐿𝐿

Ti
m

e

K. Weichman, et al., New J Phys 22, 113009 
(2020)
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Surface magnetic field generation can have surprising consequences

Microtube implosions generate and amplify magnetic fields

Any magnetic field present can be amplified by the implosion

1x1021 W/cm2

15 𝜇𝜇𝜇𝜇 FWHM
25 fs FWHM
𝜆𝜆 = 0.8 𝜇𝜇𝜇𝜇
𝑦𝑦-polarized

3 𝜇𝜇𝜇𝜇 thick 
CH shell
3 𝜇𝜇𝜇𝜇 radius 
central void
4 lasers

Microtube target

Lasers

𝐵𝐵 is amplified by electron current 
after ions reach center  (𝐸𝐸 × 𝐵𝐵)

Initially unmagnetized (𝑩𝑩𝒛𝒛𝟎𝟎 = 𝟎𝟎) case

Asymmetry provides 
seed magnetic field

Early
(electron)

Later
(ion)

M. Murakami, et al., Sci Rep 10, 18966 
(2020)

K. Weichman, et al., Appl Phys Lett 117, 244101 
(2020)

2D PIC 
simulation
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Polarity of amplified field is sensitive to parameters

Amplification of surface field
Circular 

case

Unstable

When surface magnetic field is unstable, it can be amplified in 
lieu of the seed

Stable

K. Weichman, et al., Appl Phys Lett 117, 244101 
(2020)
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Transverse magnetic fields can also affect target expansion

𝑩𝑩𝒛𝒛𝟎𝟎 ≳ 𝟏𝟏 𝒌𝒌𝑻𝑻

Rear surface 
(suppressed)

Unusual: acceleration from 
the front surface can exceed 
the rear surface

Deflection from 
laser axis

Laser

Target

-
--

-
-

x

y

1x1019 W/cm2

100 fs FWHM
𝜆𝜆 = 0.8 𝜇𝜇𝜇𝜇
𝑦𝑦-polarized

2 𝜇𝜇𝜇𝜇 thick CH 
target ≳ 𝜌𝜌𝐿𝐿
0.1 𝜇𝜇𝜇𝜇 preplasma
scale length
2D simulation

Opaque target Laser

Front surface 
(enhanced)

K. Weichman, et al., New J Phys 22, 113009 
(2020)
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Magnetized direct laser acceleration can create relativistic, underdense thermal 
plasma

𝑩𝑩𝒛𝒛𝟎𝟎 = 𝟏𝟏𝟎𝟎𝟎𝟎 − 𝟓𝟓𝟎𝟎𝟎𝟎 𝑻𝑻 (2D) isotropic spectrum

Magnetic fields enable relativistic plasma generation in an 
otherwise difficult-to-access regime

Long pulse
Relativistic energy

x
y

-

-

Short pulse

-

--

-

𝑎𝑎0 = 5
20 fs FWHM

10−3 − 10−2ncr
100+ 𝜇𝜇𝜇𝜇 thick H 2D simulationPlasma

fs laser
100 𝜇𝜇𝜇𝜇 FWHM
𝜆𝜆 = 1 𝜇𝜇𝜇𝜇

𝑎𝑎0 = 1
0.8 ps FWHM

ps laser Both lasers

𝑩𝑩𝟎𝟎
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Heating mechanism is robust to electron motion in the third direction

With 𝒑𝒑𝒛𝒛 ≠ 𝟎𝟎

𝒅𝒅𝜽𝜽
𝒅𝒅𝒍𝒍

= 𝟏𝟏 −
𝒑𝒑𝒛𝒛𝟐𝟐

𝒑𝒑𝒚𝒚𝟐𝟐 + 𝒑𝒑𝒛𝒛𝟐𝟐
⋅

𝝎𝝎𝒄𝒄
𝝎𝝎𝟎𝟎

+ 𝟏𝟏
𝜷𝜷 𝒄𝒄𝒄𝒄𝒍𝒍 𝜽𝜽 − 𝟏𝟏 𝒅𝒅𝒂𝒂

𝒅𝒅𝒍𝒍
𝜸𝜸(𝟏𝟏 − 𝜷𝜷 𝒄𝒄𝒄𝒄𝒍𝒍 𝜽𝜽)

𝒅𝒅𝜸𝜸
𝒅𝒅𝒍𝒍

= 𝟏𝟏 −
𝒑𝒑𝒛𝒛𝟐𝟐

𝒑𝒑𝒚𝒚𝟐𝟐 + 𝒑𝒑𝒛𝒛𝟐𝟐
⋅
𝜷𝜷 𝒍𝒍𝒔𝒔𝒏𝒏 𝜽𝜽𝒅𝒅𝒂𝒂𝒅𝒅𝒍𝒍
𝟏𝟏 − 𝜷𝜷 𝒄𝒄𝒄𝒄𝒍𝒍 𝜽𝜽

𝒑𝒑𝒙𝒙 = |𝒑𝒑| 𝒄𝒄𝒄𝒄𝒍𝒍 𝜽𝜽

Motion in third direction preserves 𝜽𝜽 during 
acceleration, but reduces energy gain

Final average energy: 0.9 MeV
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Heating is robust over 𝟏𝟏𝟎𝟎−𝟑𝟑 − 𝟏𝟏𝟎𝟎−𝟐𝟐 𝒏𝒏𝒄𝒄𝒄𝒄, but breaks down for higher density

• Lasers substantially modify density profile for 
𝟏𝟏𝟎𝟎−𝟑𝟑 𝒏𝒏𝒄𝒄𝒄𝒄, but this does not appear to affect 
spectrum

• At lower density (e.g. 𝟏𝟏𝟎𝟎−𝟒𝟒 𝒏𝒏𝒄𝒄𝒄𝒄), have 𝝎𝝎𝒑𝒑 < 𝝎𝝎𝒄𝒄, 
which changes dynamics (based on 1D 
simulations)

• At higher density, charge separation 𝑬𝑬 visibly 
interrupts cyclotron rotation
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1D simulations predict even higher energy can be achieved in mm plasma, 
including with lower fields

𝑩𝑩𝟎𝟎 = 𝟓𝟓𝟎𝟎𝟎𝟎 T 𝑩𝑩𝟎𝟎 = 𝟐𝟐𝟎𝟎𝟎𝟎 T (longer pulse 
duration)

Magnetically assisted DLA may be experimentally 
realizable using easily accessible plasma conditions
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