Optimization of Beam-Port Configurations to Minimize Low-Mode Perturbations in High-Yield Inertial Confinement Fusion Targets

2D DRACO simulations Perturbation scaling with beam number 92-beam configuration at t_{bang}- 20 ps n=2102 *r*_{beam} = 0.8 r_{beam} = 1.0 101 $r_{\rm beam} = 1.2$ $r_{\text{beam}} = 1.4$ $\sigma_{\rm rms}$ (%) ρ 00 $1/\sqrt{N_{\rm B}}$ 150 optimization 100 10-1 50 10-2 150 200 50 100 0 NB

arpa·e

W. Trickey **University of Rochester** Laboratory for Laser Energetics

ROCHESTER

Society Division of Plasma Physics U.S. DEPARTMENT OF Office of 8-12 November 2021 Science

Pittsburgh, PA

63rd Annual Meeting of the American Physical

Summary

Candidate beam configurations can be found through charged-particle simulations initialized with icosahedral symmetry and tested in DRACO

- High-yield ICF targets require good symmetry and minimization of low-mode perturbations
- Beam-port geometry is one major contributor to low-mode shell asymmetries
- The best candidate configurations are based on icosahedrons with charged-particle optimization
- Multidimensional radiation-hydrodynamics simulations are underway, 2D (DRACO) and 3D (ASTER)*

Collaborators

V. N. Goncharov, E. M. Campbell, T. J. B. Collins, M. J. Rosenberg, N. Shaffer, W. Theobald, R. C. Shah, A. Shvydky, and I. V. Igumenshchev Laboratory for Laser Energetics University of Rochester

> A. Colaïtis Centre Lasers Intenses et Applications University of Bordeaux

S. Atzeni and L. Savino Università di Roma, "La Sapienza"

High-Yield Targets

High-yield targets require good shell stability, in particular the dynamic shell has long periods of hydrodynamic implosion/expansion

High-yield design Dynamic shell target* requires low shell asymmetry several stages of hydrodynamic implosion/expansion to consider for stability **DT Wetted Foam** Power (TW) Wetted DT Foam 110 µm 100 DT solid Adiabat – 1.4 10 450 µm **IFAR - 13** DT gas 0 50 100 150 200 250 Time (ns) CR – 22 850 µm Blast-wave expansion, density Shell acceleration *v*_{imp} – 264 km/s relaxation, and shell formation Shock heating and hot-spot formation E_{Laser} – 1.10 MJ **Fuel flow** Shellforming 250E_{yield} – 145 MJ Converging shocks shocks 😾 $\widehat{\sum}_{150}^{200}$ Gain – 132 150Power 100Lower-Shockdensity 50collision region region Implosion Explosion Implosion 10 1520 5 TC15894 Time (ns)

CR: convergence ratio IFAR: in-flight aspect ratio

* V. N. Goncharov et al., NO04.00012, this conference

Irradiation Uniformity Optimization

Optimization of irradiation uniformity is well studied; a charged-particle optimization technique has been shown to work

- Beam-ports modelled as charged particles fixed to the surface of a sphere
- Historically referred to as the Thomson Problem**
- Many other techniques exist for beam-port optimization^{†, ‡}

Figures from Murakami et al. *

* M. Murakami et al., Phys. Plasmas 17, 082702 (2010) ** J.J. Thomson F.R.S. (1904) XXIV, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 7:39, 237-265 [†] S. Skupsky et al., Journal of Applied Physics 66, 3456 (1989) [‡] C. Tian ett al., Opt. Express 23, 12362-12372 (2015)

ROCHESTER

Low-mode perturbations scale as $N_{\rm R}^{1/2}$ with a number of dips at specific $N_{\rm R}$'s

- An analytic laser-absorption ٠ model* used to find Legendre mode contributions
- $\sigma_{\rm rms}$ is the sum of all mode contributions

 r_{beam} – *r* at 95% integrated beam energy

$$I(r) = I_0 \exp - \left(\frac{r}{r_{\text{beam}}}\right)^n$$

Beam factor

* M. Murakami et al., Phys. Plasmas 17, 082702 (2010)

The highest-performing beam-port configurations share icosahedral symmetry

- Class of geometric shapes with icosahedral symmetry
- Formed by subdividing triangular faces and projecting vertices onto the surface of a sphere

Two Classes

- Face-centered points: $N_{\rm B}$ = 20, 60, 80, 140, 180...
- Vertex-centered points: *N*_B = 12, 32, 42, 72, 92, 122, 132, 172...

Images accessed from https://en.wikipedia.org/wiki/Geodesic_polyhedron (10/11/21)

Geometric Icosahedral Configurations

The high performance of icosahedral configurations comes from the suppression of the $\ell = 6$ Legendre mode

- Typical charged-particle configurations have small contributions from many modes
- Dip in the single beam factor at $\ell = 6$ significantly reduces $\sigma_{\rm rms}$
- Decaying single-beam factor means higher modes are less important

Beam factor

Geometric factor

$\sigma_{\rm rms}$ of Icosahedral Configurations

Geodesic icosahedral configurations show much lower $\sigma_{\rm rms}$ than the random charged-particle configurations

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

TC15809

$\sigma_{\rm rms}$ of Icosahedral Configurations

Geodesic icosahedral configurations with charged particle optimization show highest performance

2D Radiation Hydrodynamics

The analytic laser deposition model is not sufficient, 2D radiation hydrodynamics modelling was carried out with DRACO for 4 configurations

cp: charged particle ico: icosahedral lcocp: icosahedral + charged particle

Two-Dimensional Radiation Hydrodynamics

Some of the suppression of the ℓ=6 mode is lost but crucially the contributions from lowest modes is smallest for the icosahedral configurations

ROCHESTER

wtri@lle.rochester.edu

Candidate beam configurations can be found through charged-particle simulations initialized with icosahedral symmetry and tested in DRACO

- High-yield ICF targets require good symmetry and minimization of low-mode perturbations
- Beam-port geometry is one major contributor to low-mode shell asymmetries
- The best candidate configurations are based on icosahedrons with charged-particle optimization
- Multidimensional radiation-hydrodynamics simulations are underway, 2D (DRACO) and 3D (ASTER)*

Charged Particle Simulation

- Calculates Coulomb Force
- Updates using suvat eqns

Convergence:
$$E_{t+1} - E_{t-1} < 10^{-17}$$

Analytic rms non-uniformity model

Single beam factor comes from the beam profile, expanding the irradiation profile along the target surface into Legendre polynomials

Geometric factor comes from the relative pointings and powers of each beam

along the target surface into Legendre
polynomials
$$a_{l} = \frac{2l+1}{2} \int_{-1}^{1} I_{a}(\theta) P_{l}(\cos \theta) d(\cos \theta)$$
$$G_{l} = \left[\sum_{j=1}^{N_{B}} \sum_{k=1}^{N_{B}} \frac{P_{l}(\Omega_{j} \cdot \Omega_{k}) I_{j} I_{k}}{I_{T}^{2}}\right] / N_{B}$$

I - mode number
$$P_{n} - \text{Legedre Polynomial}$$
$$\sigma_{rms} = \left[\sum_{l=1}^{\infty} \frac{a_{l}^{2}}{2l+1} \left(G_{l}^{2} + \frac{\sigma_{sys}^{2}}{N_{B}}\right)\right]^{1/2}$$

Single beam factor

Single beam factor

Geometric Factor

i=1 k=1

 $I_j = I_k , \frac{I_j I_k}{I_T^2} = 1$

15

10

Mode number

5

0

$$P_l(\boldsymbol{\Omega}_j \cdot \boldsymbol{\Omega}_k) = \frac{4\pi}{2l+1} \sum_{m=-l}^{l} Y_{lm}^*(\boldsymbol{\Omega}_j) Y_{lm}(\boldsymbol{\Omega}_k)$$

 $G_l = \left[\sum_{i=1}^{N_B} \sum_{k=1}^{N_B} \frac{P_l (\mathbf{\Omega}_j \cdot \mathbf{\Omega}_k) I_j I_k}{I_T^2}\right] / N_B$

20

Super-Gaussian Parameter Dependence

The performance of a beam configuration varies with the Super-Gaussian spot shape parameters

Scaling with σ_{sys}

Two-Dimensional Radiation Hydrodynamics

Icosahedral with charged particle configurations have the lowest contribution from modes below dominant mode number

2D Radiation Hydrodynamics

Mode structure in DRACO Simulations inner shell position at CR=2

2D Radiation Hydrodynamics

Mode structure in DRACO Simulations inner shell position at 2.225ns (bt = 2.45ns)

