Optimization of Beam-Port Configurations to Minimize Low-Mode Perturbations in High-Yield Inertial Confinement Fusion Targets

W. Trickey
University of Rochester
Laboratory for Laser Energetics

63rd Annual Meeting of the American Physical Society Division of Plasma Physics
Pittsburgh, PA
8–12 November 2021

Perturbation scaling with beam number

92-beam configuration

2D DRACO simulations at t_{bang} - 20 ps

W. Trickey
University of Rochester
Laboratory for Laser Energetics

63rd Annual Meeting of the American Physical Society Division of Plasma Physics
Pittsburgh, PA
8–12 November 2021

wtri@lle.rochester.edu
Summary

Candidate beam configurations can be found through charged-particle simulations initialized with icosahedral symmetry and tested in DRACO

- High-yield ICF targets require good symmetry and minimization of low-mode perturbations
- Beam-port geometry is one major contributor to low-mode shell asymmetries
- The best candidate configurations are based on icosahedrons with charged-particle optimization
- Multidimensional radiation-hydrodynamics simulations are underway, 2D (DRACO) and 3D (ASTER)*

ICF: inertial confinement fusion
* I. V. Igumenshchev et al., NO04.00015, this conference.
Collaborators

Laboratory for Laser Energetics
University of Rochester

A. Colaitis
Centre Lasers Intenses et Applications
University of Bordeaux

S. Atzeni and L. Savino
Università di Roma, “La Sapienza”
High-yield targets require good shell stability, in particular the dynamic shell has long periods of hydrodynamic implosion/expansion.

- High-yield design
 - requires low shell asymmetry

Wetted DT Foam
Adiabat – 1.4
IFAR - 13
CR – 22
\(v_{\text{imp}} \) – 264 km/s
\(E_{\text{Laser}} \) – 1.10 MJ
\(E_{\text{yield}} \) – 145 MJ
Gain – 132

- Dynamic shell target*
 - several stages of hydrodynamic implosion/expansion to consider for stability

* V. N. Goncharov et al., NO04.00012, this conference
Optimization of irradiation uniformity is well studied; a charged-particle optimization technique has been shown to work

- Beam-ports modelled as charged particles fixed to the surface of a sphere
- Historically referred to as the Thomson Problem**
- Many other techniques exist for beam-port optimization†, ‡

\[F_i = \sum_{j=1(j \neq i)}^{N_B} A \frac{\mathbf{r}_i - \mathbf{r}_j}{|\mathbf{r}_i - \mathbf{r}_j|^3} - B \frac{d\mathbf{r}_i}{dt} \]

\[E_p = \frac{1}{2} \sum_{i=1}^{N_B} \sum_{j=1(j \neq i)}^{N_B} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \]

Figures from Murakami et al. *

Charged-Particle Configuration

Low-mode perturbations scale as $N_B^{1/2}$ with a number of dips at specific N_B's

- An analytic laser-absorption model* used to find Legendre mode contributions
- σ_{rms} is the sum of all mode contributions

$$\sigma_{\text{rms}} = \left[\sum_{\ell=1}^{\infty} \frac{a_{\ell}^2}{2\ell + 1} G_{\ell}^2 \right]^{1/2}$$

Beam factor

$$a_{\ell} = \frac{2l + 1}{2} \int_{-1}^{1} I_\ell(\cos \theta) P_l(\cos \theta) d(\cos \theta)$$

Geometric factor

$$G_{\ell} = \left[\sum_{j=1}^{N_B} \sum_{k=1}^{N_B} \frac{P_l(\Omega_j \cdot \hat{r}) P_l(\Omega_k \cdot \hat{r})}{I_{\ell}^2} \right] / N_B$$

$r_{\text{beam}} - r$ at 95% integrated beam energy

$$I(r) = I_0 \exp \left(-\left(\frac{r}{r_{\text{beam}}} \right)^n \right)$$

- Significant drop in σ_{rms} observed at $N_B = 72$

wtri@lle.rochester.edu
The highest-performing beam-port configurations share icosahedral symmetry

- Class of geometric shapes with icosahedral symmetry
- Formed by subdividing triangular faces and projecting vertices onto the surface of a sphere

Two Classes
- Face-centered points: $N_B = 20, 60, 80, 140, 180…$
- Vertex-centered points: $N_B = 12, 32, 42, 72, 92, 122, 132, 172…$

Images accessed from
The high performance of icosahedral configurations comes from the suppression of the $\ell = 6$ Legendre mode

- Typical charged-particle configurations have small contributions from many modes
- Dip in the single beam factor at $\ell = 6$ significantly reduces σ_{rms}
- Decaying single-beam factor means higher modes are less important

$$
\sigma_{\text{rms}} = \left[\sum_{n=1}^{\infty} \frac{a_n^2}{2n + 1} G_n^2 \right]^{1/2}
$$
Geodesic icosahedral configurations show much lower σ_{rms} than the random charged-particle configurations.

$$\sigma_{\text{rms}} = \left[\sum_{n=1}^{\infty} \frac{a_n^2}{2n + 1} G_n^2 \right]^{1/2}$$

Geodesic icosahedral configurations
Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes

Minimization of $\ell = 6$

Geodesic icosahedral configurations are further improved with charged-particle optimization

92-beam configuration with charged-particle distortion

Changes to the spectral structure of the modes
Geodesic icosahedral configurations with charged particle optimization show highest performance

\[\sigma_{\text{rms}} = \left[\sum_{n=1}^{\infty} \frac{a_n^2}{2n + 1} G_n^2 \right]^{1/2} \]

Geodesic icosahedral configurations

Geodesic icosahedral + charged-particle configurations
The analytic laser deposition model is not sufficient, 2D radiation hydrodynamics modelling was carried out with DRACO for 4 configurations.
Two-Dimensional Radiation Hydrodynamics

Some of the suppression of the $\ell=6$ mode is lost but crucially the contributions from lowest modes is smallest for the icosahedral configurations.

Graphs:
- **80-beam cp**
 - Mode number vs σ_{rms} (μm)
 - $\ell < 6$ vs $\ell = 6$ vs $\ell > 6$ Total
 - σ_{rms} (μm) = 0.12 0.09 0.28 0.32

- **92-beam cp**
 - Mode number vs σ_{rms} (μm)
 - $\ell < 6$ vs $\ell = 6$ vs $\ell > 6$ Total
 - σ_{rms} (μm) = 0.08 0.16 0.27 0.32

- **92-beam icosahedral**
 - Mode number vs σ_{rms} (μm)
 - $\ell < 6$ vs $\ell = 6$ vs $\ell > 6$ Total
 - σ_{rms} (μm) = 0.03 0.86 0.30 0.91

- **92-beam icosahedral + cp**
 - Mode number vs σ_{rms} (μm)
 - $\ell < 6$ vs $\ell = 6$ vs $\ell > 6$ Total
 - σ_{rms} (μm) = 0.02 0.22 0.29 0.36

Legend:
- cp: charged particle
- ico: icosahedral
- icocp: icosahedral + charged particle

TC15657

wtri@lle.rochester.edu
Summary/Conclusions

Candidate beam configurations can be found through charged-particle simulations initialized with icosahedral symmetry and tested in DRACO

- High-yield ICF targets require good symmetry and minimization of low-mode perturbations
- Beam-port geometry is one major contributor to low-mode shell asymmetries
- The best candidate configurations are based on icosahedrons with charged-particle optimization
- Multidimensional radiation-hydrodynamics simulations are underway, 2D (DRACO) and 3D (ASTER)*

ICF: inertial confinement fusion
* I. V. Igumenshchev et al., NO04.00015, this conference.
Additional Slides

Charged Particle Simulation

- Calculates Coulomb Force
- Updates using suvat eqns

\[F_i = \sum_{j=1}^{NB} A \frac{\hat{r}_i - \hat{r}_j}{|\hat{r}_i - \hat{r}_j|^3} - B \frac{d\hat{r}_i}{dt} \]

\[E_p = \frac{1}{2} \sum_{i=1}^{NB} \sum_{j=1(j \neq i)}^{NB} \frac{1}{|\hat{r}_i - \hat{r}_j|} \]

Convergence: \(E_{t+1} - E_{t-1} < 10^{-11} \)

wtri@lle.rochester.edu
Analytic rms non-uniformity model

Single beam factor comes from the beam profile, expanding the irradiation profile along the target surface into Legendre polynomials

\[
a_l = \frac{2l + 1}{2} \int_{-1}^{1} I_a(\theta) P_l(\cos \theta) d(\cos \theta)
\]

- \(l\) - mode number
- \(P_n\) – Legendre Polynomial
- \(\theta\) – Angle from beam axis

Geometric factor comes from the relative pointings and powers of each beam

\[
G_l = \frac{\sum_{j=1}^{NB} \sum_{k=1}^{NB} P_l(\Omega_j \cdot \Omega_k) I_j I_k}{I_T^2} / NB
\]

- \(\sigma_{rms}\) - Root Mean Square

\[
\sigma_{rms} = \left(\sum_{l=1}^{\infty} \frac{a_l^2}{2l + 1} \left(G_l^2 + \frac{\sigma_{sys}^2}{NB} \right) \right)^{1/2}
\]
Single beam factor

\[I(r) = I_0 \exp \left(-\left(\frac{r}{r_0 \alpha} \right)^\beta \right) \]

\[I_a(\theta) = I_0 \left[1 - (1 - \eta)^{\cos^3 \theta} \right] \exp \left[-(\sin \theta / \alpha)^\beta \right] \cos \theta \]

\[a_l = \frac{2l + 1}{2} \int_{-1}^{1} I_a(\theta)P_l(\cos \theta) d(\cos \theta) \]
Single beam factor

\[I(r) = I_0 \exp \left(- \left(\frac{r}{r_0 \alpha} \right)^\beta \right) \]

\[I_a(\theta) = I_0 \left[1 - (1 - \eta)\cos^3 \theta \right] \exp \left[-\left(\sin \theta / \alpha \right)^\beta \right] \cos \theta \]

\[a_l = \frac{2l + 1}{2} \int_{-1}^{1} I_a(\theta)P_l(\cos \theta) \, d(\cos \theta) \]
Geometric Factor

$$G_l = \left[\sum_{j=1}^{N_B} \sum_{k=1}^{N_B} \frac{P_l(\Omega_j \cdot \Omega_k)I_jI_k}{I_T^2} \right] / N_B$$

$$I_j = I_k, \frac{I_jI_k}{I_T^2} = 1$$

$$P_l(\Omega_j \cdot \Omega_k) = \frac{4\pi}{2l + 1} \sum_{m=-l}^{l} Y_{lm}^*(\Omega_j) Y_{lm}(\Omega_k)$$
Super-Gaussian Parameter Dependence

The performance of a beam configuration varies with the Super-Gaussian spot shape parameters

\[I(r) = I_0 \exp \left(-\frac{r}{r_{\text{beam}}} \right)^n \]

\[r_{\text{beam}} - r \] at 95% integrated beam energy

\(\sigma_{\text{rms}} \text{ for } N_B = 92 \)
Scaling with σ_{sys}

\[
\sigma_{\text{rms}} = \left[\sum_{n=l}^{\infty} \frac{a_i^2}{2l + 1} \left(\sigma_i^2 + \frac{\sigma_{\text{sys}}^2}{N_B} \right) \right]^{\frac{1}{2}}
\]

Face Centered

Vertex Centered

80 beams

92 beams
Icosahedral with charged particle configurations have the lowest contribution from modes below dominant mode number.

TC15697

\[\sigma_{\text{rms}} (\%) \]

\[
\begin{array}{cccc}
\ell < 6 & \ell = 6 & \ell > 6 & \text{Total} \\
0.10 & 0.04 & 0.13 & 0.17 \\
0.07 & 0.06 & 0.08 & 0.12 \\
\end{array}
\]

\[\sigma_{\text{rms}} (\mu \text{m}) \]

\[
\begin{array}{cccc}
\ell < 6 & \ell = 6 & \ell > 6 & \text{Total} \\
0.02 & 0.33 & 0.11 & 0.35 \\
0.01 & 0.08 & 0.11 & 0.14 \\
\end{array}
\]

cp: charged particle
ico: icosahedral
icocp: icosahedral + charged particle

wtri@lle.rochester.edu
Mode structure in DRACO Simulations inner shell position at CR=2

2D Radiation Hydrodynamics

80 beam cp

<table>
<thead>
<tr>
<th>σ_{rms} (µm)</th>
<th>$\ell < 6$</th>
<th>$\ell = 6$</th>
<th>$\ell > 6$</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.08</td>
<td>0.02</td>
<td>0.02</td>
<td>0.08</td>
<td></td>
</tr>
</tbody>
</table>

92 beam cp

<table>
<thead>
<tr>
<th>σ_{rms} (µm)</th>
<th>$\ell < 6$</th>
<th>$\ell = 6$</th>
<th>$\ell > 6$</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>0.05</td>
<td>0.02</td>
<td>0.08</td>
<td></td>
</tr>
</tbody>
</table>

92 beam icosahedral

<table>
<thead>
<tr>
<th>σ_{rms} (µm)</th>
<th>$\ell < 6$</th>
<th>$\ell = 6$</th>
<th>$\ell > 6$</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.24</td>
<td>0.3</td>
<td>0.24</td>
<td></td>
</tr>
</tbody>
</table>

92 beam icosahedral+cp

<table>
<thead>
<tr>
<th>σ_{rms} (µm)</th>
<th>$\ell < 6$</th>
<th>$\ell = 6$</th>
<th>$\ell > 6$</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.06</td>
<td>0.02</td>
<td>0.07</td>
<td></td>
</tr>
</tbody>
</table>
Mode structure in DRACO Simulations inner shell position at 2.225ns (bt = 2.45ns)

<table>
<thead>
<tr>
<th>Mode Structure</th>
<th>(\ell < 6)</th>
<th>(\ell = 6)</th>
<th>(\ell > 6)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 beam cp</td>
<td>0.12</td>
<td>0.09</td>
<td>0.28</td>
<td>0.32</td>
</tr>
<tr>
<td>92 beam cp</td>
<td>0.08</td>
<td>0.16</td>
<td>0.27</td>
<td>0.32</td>
</tr>
<tr>
<td>92 beam icosahedral</td>
<td>0.03</td>
<td>0.86</td>
<td>0.30</td>
<td>0.91</td>
</tr>
<tr>
<td>92 beam icosahedral+cp</td>
<td>0.02</td>
<td>0.22</td>
<td>0.29</td>
<td>0.36</td>
</tr>
</tbody>
</table>

wtri@lle.rochester.edu