Shock-Augmented Ignition Using Indirect Drive

W. TRICKEY,^{1,2} R. H. H. SCOTT,³ and N. WOOLSEY²

¹University of Rochester, Laboratory for Laser Energetics, ²University of York, Department of Physics, and ³STFC Rutherford Appleton Laboratory

Shock-Augmented Ignition

- Proposed by R. Scott *et al.* [1]
- Drop in drive power reduces coronal pressure
- Allows for the launch

Ignition Comparison

Hohlraum model converts laser pulse to x-rays

UR

- One-dimensional implosion simulated using **1-D radiation-hydrodynamics code HYADES**

of a late-stage strong shock with moderate power

 Lower peak intensities can mitigate laserplasma instabilities

Figure 1. Comparison between a shock augmenting pulse and a standard central hot spot (CHS) ignition pulse

Shock Collision

 Augmenting shock collides with rebound shock near inner surface

 Raises shell density and hot spot pressure, triggering ignition

Shock-augmented pulse created from modified **NIF-like pulse**

Figure 2. Plot of the pressure and density profiles in the shell before and after the shock collision

Laser to X-Ray Hohlraum Model

2.5 mm 8.2 mm

• Laser to x-ray conversion was handled with a time-dependent physics model [2]

$$S_{\rm r} = 14.1 \times S_{\rm a}^{0.748} \times E_{\rm a}^{0.511}$$

S_r: flux reflected from wall S_a: laser flux absorbed in wall **P**_{las}: laser power

Bayesian Optimization

- Bayesian optimization [3] is used to find the best pulse shape
- Choice of optimization parameter helps focus on low-velocity implosions
- Six parameters optimized over **1800 simulations**

Figure 6. Plot showing the six pulse parameters that were used in the Bayesian optimization algorithm

Conclusions

• A strong, late-stage shock can be launched in an implosion when coronal

A: absorbing surface area

Figure 3. Schematic of hohlraum dimensions

Funding Information

We gratefully acknowledge funding from the EPSRC through Grant EP/P026796/1 and EUROfusion project CFP-FSD-AWP21-ENR-01-CEA-02.

Engineering and **Physical Sciences Research Council**

- pressure is reduced via a drop in driver power
- Only a moderate rise (\approx 50 eV in 1 ns) in x-ray drive is required to launch the shock
- One-dimensional radiation-hydrodynamics simulations have shown that a shock-augmented pulse can increase yield compared to a CHS pulse while lowering implosion velocity

References

[1] R. Scott *et al.*, Bull. Am. Phys. Soc. <u>65</u>, GO09.00010 (2020). [2] M. Basko, Phys. Plasmas <u>3</u>, 4148 (1996). [3] F. Nogueira, Bayesian Optimization: Open Source Constrained Global Optimization Tool for Python, Accessed 21 October 2021, https://github.com/fmfn/BayesianOptimization.

Shock-Augmented Ignition

Figure 1. Comparison between a shock augmenting pulse and a standard central hot spot (CHS) ignition pulse

Proposed by R. Scott *et al.* [1]

 Drop in drive power reduces coronal pressure

 Allows for the launch of a late-stage strong shock with moderate power

 Lower peak intensities can mitigate laser– plasma instabilities

Shock Collision

Figure 2. Plot of the pressure and density profiles in the shell before and after the shock collision

Augmenting shock collides with rebound shock near inner surface of shell

 Raises shell density and hot spot pressure, triggering ignition

Laser to X-Ray Hohlraum Model

 Laser to x-ray conversion was handled with a time-dependent physics model [2]

$$S_{\rm r} = 14.1 \times S_{\rm a}^{0.7}$$

S_r: flux reflected from wall

- S_a: laser flux absorbed in wall
- **P**_{las}: laser power
 - A: absorbing surface area

$'^{48} \times E_{a}^{0.511}$

Funding Information

We gratefully acknowledge funding from the EPSRC through Grant EP/P026796/1 and EUROfusion project CFP-FSD-AWP21-ENR-01-CEA-02.

Engineering and Physical Sciences **Research Council**

Ignition Comparison

- Hohlraum model converts laser pulse to x-rays
- One-dimensional implosion simulated using 1-D radiation-hydrodynamics code HYADES
- Shock-augmented pulse created from modified
 NIF-like pulse

Time (ns)

Figure 5. CHS laser pulse and x-ray drive ! Figure 6. SAI laser pulse and x-ray drive

Bayesian Optimization

- Bayesian optimization [3] is used to find the best pulse shape
- Choice of optimization parameter helps focus on low-velocity implosions
- Six parameters optimized over **1800 simulations**

Figure 6. Plot showing the six pulse parameters that were used in the Bayesian optimization algorithm

Conclusions

- A strong, late-stage shock can be launched in an implosion when coronal pressure is reduced via a drop in driver power
- Only a moderate rise (\approx 50 eV in 1 ns) in x-ray drive is required to launch the shock
- One-dimensional radiation-hydrodynamics simulations have shown that a shock-augmented pulse can increase yield compared to a CHS pulse while lowering implosion velocity

References

- [1] R. Scott *et al.*, Bull. Am. Phys. Soc. <u>65</u>, GO09.00010 (2020).
- [2] M. Basko, Phys. Plasmas <u>3</u>, 4148 (1996).
- [3] F. Nogueira, Bayesian Optimization: Open Source Constrained Global Optimization Tool for Python, Accessed 21 October 2021,

https://github.com/fmfn/BayesianOptimization.