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Figure 4.
Schematic 
of capsule 
dimensions

Figure 5. CHS laser pulse and x-ray drive Figure 6. SAI laser pulse and x-ray drive

• Hohlraum model converts laser pulse to x-rays

• One-dimensional implosion simulated using 
1-D radiation-hydrodynamics code HYADES

• Shock-augmented pulse created from modifi ed 
NIF-like pulse
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Bayesian Optimization

TC15924

Figure 6. Plot showing the six pulse 
parameters that were used in the Bayesian 
optimization algorithm

• Bayesian optimization [3] is used 
to fi nd the best pulse shape

• Choice of optimization parameter 
helps focus on low-velocity 
implosions

• Six parameters optimized over
1800 simulations

Elaser = 1.46 MJ 
Eyield = 17.20 MJ
vimp = 337 km/s
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Conclusions

TC15925

• A strong, late-stage shock can be launched in an implosion when coronal 
pressure is reduced via a drop in driver power

• Only a moderate rise (≈50 eV in 1 ns) in x-ray drive is required to launch the shock

• One-dimensional radiation-hydrodynamics simulations have shown that a 
shock-augmented pulse can increase yield compared to a CHS pulse while 
lowering implosion velocity

Shock-Augmented Ignition

TC15919

• Proposed by
R. Scott et al. [1]

• Drop in drive power 
reduces coronal 
pressure

• Allows for the launch 
of a late-stage strong 
shock with moderate 
power

• Lower peak intensities 
can mitigate laser–
plasma instabilities

Figure 1. Comparison between a shock augmenting pulse 
and a standard central hot spot (CHS) ignition pulse 
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Shock Collision

TC15920

• Augmenting shock 
collides with 
rebound shock 
near inner surface 
of shell

• Raises shell 
density and hot 
spot pressure, 
triggering ignition

Figure 2. Plot of the pressure and density profi les in the 
shell before and after the shock collision 
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Laser to X-Ray Hohlraum Model

TC15921

• Laser to x-ray conversion was handled 
with a time-dependent physics model [2]

Figure 3. Schematic of hohlraum dimensions
5.1 mm

2.5 mm

8.2 mm

Sr = 14.1 ×   S   a  0.748
   ×   E   a  0.511

  

 Sr:  fl ux refl ected from wall
 Sa: laser fl ux absorbed in wall
Plas: laser power
 A: absorbing surface area
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•	Proposed by 
R. Scott et al. [1]

•	Drop in drive power 
reduces coronal 
pressure

•	Allows for the launch 
of a late-stage strong 
shock with moderate 
power

•	Lower peak intensities 
can mitigate laser–
plasma instabilities
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and a standard central hot spot (CHS) ignition pulse 
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Shock Collision

TC15920

•	Augmenting shock 
collides with 
rebound shock 
near inner surface 
of shell

•	Raises shell 
density and hot 
spot pressure, 
triggering ignition

Figure 2. Plot of the pressure and density profiles in the 
shell before and after the shock collision 
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Laser to X-Ray Hohlraum Model

TC15921

•	Laser to x-ray conversion was handled 
with a time-dependent physics model [2]

Figure 3. Schematic of hohlraum dimensions
5.1 mm

2.5 mm

8.2 mm

Sr = 14.1 × ​​S ​ a​ 0.748
​​ × ​​E ​ a​ 0.511

​​

	 Sr: 	flux reflected from wall
	 Sa:	laser flux absorbed in wall
Plas:	laser power
	 A:	absorbing surface area
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Figure 4. 
Schematic 
of capsule 
dimensions

Figure 5. CHS laser pulse and x-ray drive Figure 6. SAI laser pulse and x-ray drive

•	Hohlraum model converts laser pulse to x-rays

•	One-dimensional implosion simulated using 
1-D radiation-hydrodynamics code HYADES

•	Shock-augmented pulse created from modified 
NIF-like pulse
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Bayesian Optimization

TC15924

Figure 6. Plot showing the six pulse 
parameters that were used in the Bayesian 
optimization algorithm

•	Bayesian optimization [3] is used 
to find the best pulse shape

•	Choice of optimization parameter 
helps focus on low-velocity 
implosions

•	Six parameters optimized over 
1800 simulations

Elaser = 1.46 MJ 
Eyield = 17.20 MJ
vimp = 337 km/s
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Pdip

dt1 dt2 dt3



Conclusions
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•	A strong, late-stage shock can be launched in an implosion when coronal 
pressure is reduced via a drop in driver power

•	Only a moderate rise (≈50 eV in 1 ns) in x-ray drive is required to launch the shock

•	One-dimensional radiation-hydrodynamics simulations have shown that a 
shock-augmented pulse can increase yield compared to a CHS pulse while 
lowering implosion velocity
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