Shock-Augmented Ignition Using Indirect Drive
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Figure 1. Comparison between a shock augmenting pulse
and a standard central hot spot (CHS) ignition pulse
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Figure 2. Plot of the pressure and density profiles in the
shell before and after the shock collision

Laser to X-Ray Hohiraum Model

2.5 mm - Laser to x-ray conversion was handled
with a time-dependent physics model [2]

S, =141 x 32'748 X 52-5"
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S,: flux reflected from wall
S,: laser flux absorbed in wall
P\,s: laser power
A: absorbing surface area
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Figure 3. Schematic of hohlraum dimensions
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Figure 5. CHS laser pulse and x-ray drive Figure 6. SAIl laser pulse and x-ray drive

Ejaser = 1.66 MJ
Eyield = 9-61 MJ
Vimp = 372 km/s

Ejaser = 1.57 MJ
Eyield = 14.31 MJ

Vimp = 342 km/s
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Bayesian Optimization

- Bayesian optimization [3] is used Psinal
to find the best pulse shape

P
- Choice of optimization parameter peak
helps focus on low-velocity
implosions
- Six parameters optimized over P
1800 simulations d'P|

) ) )
dt; di, di;

Ejacer = 1.46 MJ

Eyield = 17.20 MJ Figure 6. Plot showing the six pulse
Vi — 337 km/s parameters that were used in the Bayesian
Im = u L] ] ™
P optimization algorithm
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Conclusions

* A strong, late-stage shock can be launched in an implosion when coronal
pressure Is reduced via a drop in driver power

- Only a moderate rise (=50 eV in 1 ns) in x-ray drive is required to launch the shock

- One-dimensional radiation-hydrodynamics simulations have shown that a
shock-augmented pulse can increase yield compared to a CHS pulse while
lowering implosion velocity
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Figure 1. Comparison between a shock augmenting pulse
and a standard central hot spot (CHS) ignition pulse

* Proposed by

R. Scott et al. [1]

* Drop In drive power

reduces coronal
pressure

« Allows for the launch

of a late-stage strong
shock with moderate
power

- Lower peak intensities

can mitigate laser—
plasma instabilities



Shock Collision
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Figure 2. Plot of the pressure and density profiles in the
shell before and after the shock collision
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8.2 mm

Laser to X-Ray Hohlraum Model

5.1 mm

- Laser to x-ray conversion was handled

with a time-dependent physics model [2]

S,=14.1 x 82'748 X 52-5"

S,: flux reflected from wall
S,: laser flux absorbed in wall
P,s: laser power
A: absorbing surface area

Figure 3. Schematic of hohlraum dimensions
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Ignition Comparison

CH plastic

198 um
DT solid - Hohlraum model converts laser pulse to x-rays
70 um . o o .

- One-dimensional implosion simulated using

DT gas 1-D radiation-hydrodynamics code HYADES

- Shock-augmented pulse created from modified
Figure 4. 857 um NIF-like pulse
Schematic
of capsule
dimensions Vy
Central Hot Spot Ignition Shock-Augmented Ignition

400 F | | | | - = | | | o 1300
= —Radiation -- | =
= 300|| temperature A | {200 £
- ---Laser power roo | -
O i o
= 200+ LR L4100 2
O 1
o ! '| | o
5 100 A 10 3
s __l | 1 ©
— O B | | _

0 5 10 15 20 25' O 5 10 15 20 25

Time (ns) Time (ns)

Figure 5. CHS laser pulse and x-ray drive Figure 6. SAI laser pulse and x-ray drive

Eyield = 961 MJ
Vmwf=372knﬂs

Eyielq = 14.31 MJ
Vm“f=342knﬂs
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Bayesian Optimization

- Bayesian optimization [3] is used Psinal
to find the best pulse shape

P
- Choice of optimization parameter peak

helps focus on low-velocity
implosions

- Six parameters optimized over p..
1800 simulations dip
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Ejacer = 1.46 MJ

Eyield = 17.20 MJ Figure 6. Plot showing the six pulse
Vi =337 km/s parameters that were used in the Bayesian
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P optimization algorithm
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Conclusions

* A strong, late-stage shock can be launched in an implosion when coronal
pressure is reduced via a drop in driver power

- Only a moderate rise (=50 eV in 1 ns) in x-ray drive is required to launch the shock

- One-dimensional radiation-hydrodynamics simulations have shown that a

shock-augmented pulse can increase yield compared to a CHS pulse while
lowering implosion velocity

5555555



References

wnN =

TTTTTTT

R. Scott et al., Bull. Am. Phys. Soc. 65, GO09.00010 (2020).

] M. Basko, Phys. Plasmas 3, 4148 (1996).

F. Nogueira, Bayesian Optimization: Open Source Constrained Global Optimization
Tool for Python, Accessed 21 October 2021,

https:/github.com/fmfn/BayesianOptimization.




