Laser-Direct-Drive Cryogenic Implosion Performance on OMEGA
Versus Target and Laser-Spot Radius
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Data on scale (S = target radius/reference) and beam-to-target radius (R,/R,)
have been used to extend the OMEGA database
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Goals: validation of stat model, perspectives on data vs theory, requirements for high gain
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Progress in direct drive has accelerated with the use of statistical methods
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Power laws are a useful way to compare data with theory, simulations,
and the statistical model
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Best Possible corrections to energetics, stability, and compression
/ case

Yusr ~ Y10 (S)*" (v)*2 (a)Xs (R,/Ry)*4 S = Hydrodynamic scale

S > v = Implosion velocity

Mechanisms in 1-D and a = DT adiabat

3-D?
R, = Radius of laser beam
D e I i >
Capsule size Additional terms

Impact can exceed scale
(e.g., X, >>X,)

Source of uncertainty and
potential bias

Experiments can be ‘designed’ to reduce uncertainties vs scale, or any other parameter
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For all of the work here, comparisons are simplified by maintaining constant
pulse shape, shock-timing, adiabat, and in-flight aspect ratio or IFAR
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Yield and areal density improve with larger capsules, relative to 1-D theory
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Hydrodynamic scale is main focus of study Velocity is predictable, the most important term in

1-D, and findings suggest instability

Statistical significance comes from precision of OMEGA laser, ~ 10 shots at each scale
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Beam-to-target radius (R,/R;) can also be used to improve performance
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Interpretations may be a function of sampling, and final analyses will require more statistics
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Calculations in DRACO can be used to predict performance vs flaws (in 2-D)
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Perturbations vs Beam Mode

05 Y = 1.87E14 y ~ P2
STD(pR)/AVG(pR) PR = 198 mg/cm?
@ peak velocity T=4.75keV
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Equivalent value at Calculations in DRACO with nominal levels of imprint,

1 g/cc is 200 nm capsule roughness, and target offset (5 um) at two
different scales. The hot spots are similar, but not self-
similar.




Small targets show more degradation by flaws of a given size,
and cause performance vs scale > 1-D expectations
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2-D calculations are not a perfect surrogate for 3-D (i.e., ASTER or HYDRA)
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DRACO also predicts sensitivities in data to R, /R,, but estimates depend on
physics models (e.g., Schurtz vs flux limiter in picket etc.)
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Final comparisons will also depend on a statistical treatment of flaws, more data
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Potential of direct drive is a function of progress at OMEGA,
and taking advantage of scale and beam-to-target radius
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= OMEGA-like targets at NIF scale could behave similarly : :
= Target offsets, roughness, etc. do not scale 25 kJ 950 kJ 25 MJ
= Laser imprint is only critical for 50 to 100 ps '
= Relative improvement in target quality ~ 4x Laser Energy E (MJ)

Low adiabat implosions are more unstable, and may have more to benefit
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OMEGA database has been expanded with single variable studies
in hydrodynamic scale (S) and beam-to-target radius (R,/R;)
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Future work to consider tradeoffs in pulse shape and timing since gain ~ My pRpr / (PRp116)
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