Laser-Direct-Drive Energy Coupling at 4×10^{14} W/cm2 to 1.2×10^{15} W/cm2 from Spherical Solid-Plastic Implosions at the National Ignition Facility

W. Theobald
University of Rochester
Laboratory for Laser Energetics

63rd Annual Meeting of the American Physical Society
Division of Plasma Physics
Pittsburgh, PA
8–12 November 2021
Summary

Energy-coupling models are validated in the laser intensity range of 4×10^{14} W/cm² to 1.2×10^{15} W/cm² with PDD experiments of spherical solid-plastic targets on the NIF.

- The measurements provide experimental shock trajectories and shock collapse time.
- Agreement is obtained with the trajectories from 2-D DRACO radiation-hydrodynamics simulations using CBET* and nonlocal heat-transport models for three laser intensities.
 - The inferred experimental shock velocity is $4 \pm 3\%$ lower than the simulated velocity for 8×10^{14} W/cm².

Future experiments will improve the measurement accuracy and field different laser pulse shapes. Similar experiments on OMEGA will test the scaling arguments of PDD implosions from OMEGA to the NIF.**

PDD: polar direct drive
NIF: National Ignition Facility
CBET: cross-beam energy transfer
** C. Stoeckl et al., UO04.00002, this conference.
Collaborators

Laboratory for Laser Energetics
University of Rochester

C. M. Shuldberg, R. W. Luo, W. Sweet, and D. N. Kaczala
General Atomics

B. Bachmann, T. Döppner, and M. Hohenberger
Lawrence Livermore National Laboratory

R. Scott
Rutherford Appleton Laboratory

A. Colaïtis
Centre Lasers Intenses et Applications
University of Bordeaux
Motivation

Previous NIF PDD energy-coupling experiments used shell-trajectory measurements inferred from coronal plasma emission and x-ray radiography.

NIF PDD implosion (0.65 MJ, 1.2×10^{15} W/cm²)

Measured gated x-ray images ($dx = 30 \mu m$, $dt = 100$ ps)

Shell trajectory

Backlit image: Indicates match in modeled and measured ν_{imp} within 1%.

Self-emission: Indicates a 9% overprediction of ν_{imp} attributed to laser imprint and subsequent Rayleigh–Taylor growth.

E_{min}: minimum fuel energy required for ignition

ν_{imp}: implosion velocity
Energy-coupling experiments relevant to LDD ignition-target designs are being conducted on the NIF using a spherical, solid-plastic target*

Solid spheres offer the advantage of quantifying energy coupling without the challenges from hydrodynamic instabilities of thin-shell implosions.

One hundred eighty-four NIF laser beams irradiated the target in a PDD geometry with different laser pulse shapes.

The shock trajectory was recorded during and after the main drive over a ~7-ns time window for a peak intensity of 8×10^{14} W/cm2.

$E_{\text{drive}} = 610$ kJ
$E_{\text{drive}} = 474$ kJ
$E_{\text{drive}} = 347$ kJ

$\langle E \rangle = 474$ kJ
$\langle E_{\text{back}} \rangle = 54$ kJ

Shock-trajectory measurements
The trajectory was recorded using a pinhole array imager on an x-ray framing camera with \(\sim 100\)-ps temporal and \(\sim 30\)-\(\mu\)m spatial resolution.
Two-dimensional DRACO simulations using CBET and nonlocal heat-transport models* accurately predict the energy coupling diagnosed with shock-trajectory measurements.

The simulations were post-processed with Spect3D** and take the instrument response function into account.

* R. Bahukutumbi et al., UO04.00001, this conference.
A slightly reduced experimental shock velocity is inferred for 8×10^{14} W/cm2 compared to simulations.

Future experiments will improve the measurement accuracy and field different pulse shapes.
Energy-coupling models are validated in the laser intensity range of 4×10^{14} W/cm2 to 1.2×10^{15} W/cm2 with PDD experiments of spherical solid-plastic targets on the NIF.

- The measurements provide experimental shock trajectories and shock collapse time.
- Agreement is obtained with the trajectories from 2-D DRACO radiation-hydrodynamics simulations using CBET* and nonlocal heat-transport models for three laser intensities:
 - The inferred experimental shock velocity is $4\pm3\%$ lower than the simulated velocity for 8×10^{14} W/cm2.

Future experiments will improve the measurement accuracy and field different laser pulse shapes. Similar experiments on OMEGA will test the scaling arguments of PDD implosions from OMEGA to the NIF.**

Summary/Conclusions

PDD: polar direct drive
NIF: National Ignition Facility
CBET: cross-beam energy transfer
** C. Stoeckl et al., UO04.00002, this conference.
The arrival time of the shock in the center of the sphere was measured at $4 \times 10^{14} \text{ W/cm}^2$ from the x-ray flash created by the shock collapse.

The x-ray flash time from both diagnostics is in agreement, providing an average value of $13.61 \pm 0.05 \text{ ns}$, which will be compared to radiation-hydrodynamic simulations.