Accessing High Density States in D₂ using Double Shock

Time (ns)

Zaire K. Sprowal University of Rochester Laboratory for Laser Energetics

ROCHESTER

63rd Annual APS Division of Plasma Physics Meeting Pittsburgh, Pennsylvania November 9, 2021

Double-Shock platform is able to facilitate unique access to high density states

• D_2 double-shock states were observed up to pressures of ~8 Mbar and densities of up to ~1.9 g/cc

• We find that these high density states probe the transition in D_2 from liquid metal to classical plasma

 We measure temperatures of up to ~ 7.5 eV for our double-shock states and note that they were significantly cooler than states with identical pressures on the principal Hugoniot

Z. K. Sprowal, L. E. Crandall, M. Zaghoo, J. R. Rygg, T. R. Boehly, D. N. Polsin, Margaret Huff, and G. W. Collins

Laboratory for Laser Energetics, Rochester, NY, USA University of Rochester, Department of Physics, Rochester, NY, USA

D. Hicks

Swinburne University of Technology, Melbourne, Australia

P. M. Celliers

Lawrence Livermore National Laboratory, Livermore, CA, USA

Double-Shock compression allows us to achieve high density states

- High density behavior of hydrogen is important for models of planetary interiors and for Inertial Confinement Fusion (ICF)
- This work will inform discrepancies observed between experiment and models in high density D₂

A. Fernandez-Pañella et al. Phys. Rev. Lett. 122, 255702 - Published 25 June 2019

Double-shock (P₂,\rho_2) state is determined by a self-impedance matching technique

□ Denotes Experimental Observable

Conservation of Mass:

$$\frac{\rho_1}{\rho_0} = \frac{U_{s1}}{U_{s1} - u_{p1}}$$

Conservation of Momentum:

$$P = \rho_0 U_{s1} u_{p1}$$

Guargaglini et al. Phys. Plasmas 26, 042704 (2019)

Double-shock (P₂,\rho_2) state is determined by a self-impedance matching technique

□ Denotes Experimental Observable

Conservation $\frac{\rho_1}{\rho_0} = \frac{U_{s1}}{U_{s1} - u_{p1}}$ $\frac{\rho_2}{\rho_1} = \frac{U_{s1}}{U_{s1}}$

$$\frac{\rho_2}{\rho_1} = \frac{U_{s2} - u_{p1}}{U_{s2} - u_{p2}}$$

Conservation of Momentum:

$$P = \rho_0 U_{s1} u_{p1}$$

$$P(u_p) = P_1 + \rho_1 (U_{s2} - u_{p1}) (u_p - u_{p1})$$

Guargaglini et al. Phys. Plasmas 26, 042704 (2019)

Double-shock (P₂,\rho_2) state is determined by a self-impedance matching technique

□ Denotes Experimental Observable

Conservation of Mass:

$$\frac{\rho_1}{\rho_0} = \frac{U_{s1}}{U_{s1} - u_{p1}}$$

$$\frac{\rho_2}{\rho_1} = \frac{U_{s2} - u_{p1}}{U_{s2} - u_{p2}}$$

Conservation of Momentum:

$$P = \rho_0 U_{s1} u_{p1}$$

$$P(u_p) = P_1 + \rho_1 (U_{s2} - u_{p1})(u_p - u_{p1})$$

 $P(u_p) = \rho_0 U_{sc} u_p$

Guargaglini et al. Phys. Plasmas 26, 042704 (2019)

Data & Analysis (D₂)

We observe single, double, and coalesced shocks in D₂ with VISAR

Temperature of shock material can be measured with SOP

Double-shock platform allows for Temperature and Conductivity measurement

- Anvil re-shock experiments require the sample to be sandwiched between materials with a higher resistance to shocks (shock impedance)
- Due to the reflectance of the shock in the quartz anvil, reflectivity and temperature could not be obtained for the D₂ sample using existing methods

A. Fernandez-Pañella et al. Phys. Rev. Lett. 122, 255702 - Published 25 June 2019

We achieve similar pressures and densities as those obtained by D_2 anvil reshock

We achieve similar pressures and densities as those obtained by D_2 anvil reshock

There is a limit on the strength of the first shock in the double shock platform

 This is due to the self-impedance matching method requirement that the shock remain transparent

A. Fernandez-Pañella et al. Phys. Rev. Lett. 122, 255702 – Published 25 June 2019

We achieve similar pressures and densities as those obtained by D_2 anvil reshock

 Double shock platform allows us to "tune" the density of the off-hugoniot state with the 1st shock pressure and density

A. Fernandez-Pañella et al. Phys. Rev. Lett. 122, 255702 - Published 25 June 2019

We achieve similar pressures and densities as those obtained by D_2 anvil reshock

1200 D_2 Hugoniot (Mihaylov et al.) This Work Anvil Reshock D₂ [2019] 1000 800 Pressure [GPa] 600 400 200 0 -1.0 1.5 2.0 2.5 0.0 0.5 $\rho [g \ cm^{-3}]$

- Double shock platform allows us to "tune" the density of the off-hugoniot state with the 1st shock pressure and density
- Our data show that anvil re-shock and double shock methods are capable of obtaining similar pressures and densities of off-hugoniot states **(P₂,ρ₂)

A. Fernandez-Pañella et al. Phys. Rev. Lett. 122, 255702 - Published 25 June 2019

Our data occupy a range of states in the liquid metallic and plasma regimes

- The feflectivity saturation observed on the L-D₂ Hugoniot between shock velocities of ~20 km/s– 40 km/s and temperatures of ~ 2 eV - 6 eV is consistent with the existence of a liquid metallic state
- A transition from liquid metal to plasma is observed at shock velocities > 40 km/s and temperatures > 6 eV

M. Zaghoo, et al. Phys. Rev. Lett. **122**, 085001 – Published 27 February 2019

Our data occupy a range of states in the liquid metallic and plasma regimes

• Our preliminary data appears to overlap the transition of L-D₂ from a Fermi-degenerate system to a classical plasma

M. Zaghoo, et al. Phys. Rev. Lett. **122**, 085001 – Published 27 February 2019

Double-Shock platform is able to facilitate unique access to high density states

• D_2 double-shock states were observed up to pressures of ~8 Mbar and densities of up to ~1.9 g/cc

• These high density states probe the transition in D₂ from liquid metal to classical plasma

 We measure temperatures of up to ~ 7.5 eV for our double-shock states and note that they were significantly cooler than states with identical pressures on the principal Hugoniot

