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Summary

Mid-Z Si layers provide a promising hot-electron preheat mitigation strategy
for direct-drive ignition designs

• Surrogate plastic implosions were used to infer the hot-electron temperature and divergence, 
and directly measure the spatial hot-electron energy deposition profile inside the imploding shell

• Hot-electron coupling from 0.2% to 0.6% of the laser energy to the unablated shell is found for 
the incident laser intensity from (0.75 to 1.25) × 1015 W/cm2, with half of the preheat coupled to 
the inner 80% of the unablated shell 

• Si layers buried in the ablator mitigate the growth of laser–plasma instabilities and reduce 
preheat, providing a promising preheat mitigation strategy for ignition designs at an on-target 
intensity of about 1015 W/cm2
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Hot-electron preheat in NIF PDD implosions was studied by comparing 
hard x-ray (HXR) emission between plastic and multilayered implosions*

Different thicknesses of the Ge-doped layer were examined to 
diagnose the hot-electron deposition profile in the imploding shell.

Mass-equivalent targets

____________
* Platform based on A. Christopherson et al., Phys. Rev. Lett. 127, 055001 (2021).
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Hot-electron preheat was inferred from comparison of the measured HXR spectra 
to simulations using the hydrocode LILAC* and the Monte Carlo code Geant4**

____________
* J. Delettrez et al., Phys. Rev. A 36, 3926 (1987).

** J. Allison et al., Nucl. Instrum. Methods Phys. Res. A 835, 186 (2016).
LPI: laser–plasma interaction

• Hot-electron temperature, total energy, divergence angle, and 
refluxing fraction were varied to reproduce the measured HXR spectra

• The hot-electron divergence half-angle is found to exceed 45°, 
the angular size of the cold shell from the nc/4 surface

Time-integrated HXR spectra
Incident intensity = 1015 W/cm2

Thot ≈ 55 keV
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The hot-electron energy deposition profile was inferred 
from Geant4 Monte Carlo simulations

• Red circles: energy deposition in the Ge-doped layer in multilayered targets

About half of the preheat (~0.2% of Elaser) is deposited in the inner 80% of the unablated shell.

Incident intensity = 1015 W/cm2
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Si layers strategically placed in the ablator were found 
to mitigate LPI and hot-electron preheat 

____________
* C. S. Liu, M. N. Rosenbluth, and R. B. White, Phys. Fluids 17, 1211 (1974); R. E. Turner et al., Phys. Rev. Lett. 54, 189 (1985); 1878(E);

J. R. Fein et al., Phys. Plasmas 24, 032707 (2017); J. F. Myatt et al., Phys. Plasmas 20, 052705 (2013).

• SRS is mitigated* in Si by
－ shortening the density scale length at nc/4 from ~420 𝝁𝝁m to ~340 𝝁𝝁m according to hydro simulations
－ increasing the electron–ion collisionality 𝝂𝝂𝐞𝐞𝐞𝐞 ∝ 𝒁𝒁𝐞𝐞𝐞𝐞𝐞𝐞 = ⁄𝒁𝒁2 𝒁𝒁 , which enhances absorption of the incident and scattered light 

and damps electron plasma waves

The Si layer suppresses SRS when it reaches 
the nc/4 region early in flattop (~5 ns)

7.5 × 1014 W/cm2 1.25 × 1015 W/cm2

FABS time-resolved SRS signal
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Hot-electron preheat is reduced by ~2× with a Si layer 
at an incident intensity of 1015 W/cm2

About half of the preheat is deposited in the inner 80% of the unablated shell.

Incident intensity = 1015 W/cm2 Incident intensity = 1015 W/cm2
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Hot-electron preheat scaling with the incident laser intensity 
has been obtained with and without a Si layer

____________
* J. A. Delettrez, T. J. B. Collins, and C. Ye, Phys. Plasmas 26, 062705 (2019), see also M. R. Rosenberg et al. UO04.00004 (this session).

** V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014).

~0.15% of the laser energy is an acceptable preheat fraction for high-gain ignition designs*

About half of the preheat is deposited 
in the inner 80% of the unablated shell:
0.1 to 0.15% of El at I ~ (1 to 1.25) × 1015 W/cm2

with a Si layer

Hot-electron energy deposition in an unablated shell

CH ablator

CH ablator 
with a Si layer

Si layers should be kept thin to maximize the drive (ablation) pressure and reduce radiation preheat** 

Si layers provide a promising preheat mitigation strategy for 
ignition designs at an on-target intensity of about 1015 W/cm2.
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Summary/Conclusions

Mid-Z Si layers provide a promising hot-electron preheat mitigation strategy
for direct-drive ignition designs

• Surrogate plastic implosions were used to infer the hot-electron temperature and divergence, 
and directly measure the spatial hot-electron energy deposition profile inside the imploding shell

• Hot-electron coupling from 0.2% to 0.6% of the laser energy to the unablated shell is found for 
the incident laser intensity from (0.75 to 1.25) × 1015 W/cm2, with half of the preheat coupled to 
the inner 80% of the unablated shell 

• Si layers buried in the ablator mitigate the growth of laser–plasma instabilities and reduce 
preheat, providing a promising preheat mitigation strategy for ignition designs at an on-target 
intensity of about 1015 W/cm2
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