Spatiotemporal control of laser intensity through cross-phase modulation
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A new method for spatiotemporal control of laser intensity can create pulses with
arbitrary velocity, transverse profile, duration, or orbital angular momentum® __
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Spatiotemporal pulse shaping provides control over the velocity and range of a laser intensity
peak, but existing techniques constrain the duration, profile, or orbital angular momentum

In a nonlinear medium, a temporally shaped, high intensity “stencil” pulse can impart a time-
dependent focusing phase onto a second, “primary” pulse through cross-phase modulation (XPM)

This offloads the constraints of spatiotemporal control onto the copropagating “stencil” pulse

This technique, the “flying focus X", can create an ultrashort, arbitrary trajectory

iIntensity peak over distances much longer than a Rayleigh range
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Spatiotemporal control of laser intensity provides an arbitrary velocity
Intensity peak over distances much larger than a Rayleigh range
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Conventional optics

« The region of high intensity is limited to the
Rayleigh range, Z

 The peak intensity travels at the group velocity, v

UNIVERSITY of

L%gm‘, OCHESTER esentations by Franke, Palastro, and Ramsey, this session ,




Spatiotemporal control of laser intensity provides an arbitrary velocity
Intensity peak over distances much larger than a Rayleigh range
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Conventional optics Spatiotemporal control

T = +2l/c

« The region of high intensity is limited to the
Rayleigh range, Z

« Chromatic aberration and chirp control
 The peak intensity travels at the group velocity, v the time and location of the focus

A tunable velocity and extended region of high intensity can enable or enhance
several laser-based applications™
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Existing techniques for spatiotemporal control constrain properties, such as
the transverse profile, duration, or orbital angular momentum
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Chromatic focusing of a chirped laser pulse* Spherical aberration and a radial delay™*

T = +2l/c

i

Tunable velocity and transverse profile, but Near transform-limited duration, but limits
intensity peak durations longer than ~1ps focal velocity and profile

*Froula et al. (2018) **Palastro et al. (2020)
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The constraints of spatiotemporal control can be mitigated by using the
interaction of two pulses in a nonlinear medium
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Through cross-phase modulation, a “stencil” pulse can modify the phase of a “primary” pulse

n2>0
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The constraints of spatiotemporal control can be mitigated by using the
interaction of two pulses in a nonlinear medium
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Through cross-phase modulation, a “stencil” pulse can modify the phase of a “primary” pulse
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The constraints of spatiotemporal control can be mitigated by using the
interaction of two pulses in a nonlinear medium
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Through cross-phase modulation, a “stencil” pulse can modify the phase of a “primary” pulse
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The constraints of spatiotemporal control can be mitigated by using the
interaction of two pulses in a nonlinear medium
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Through cross-phase modulation, a “stencil” pulse can modify the phase of a “primary” pulse
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By shaping the nonlinear medium, the stencil can apply an intensity-
dependent focusing phase to the primary
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Through cross-phase modulation, a “stencil” pulse can modify the phase of a “primary” pulse

n2>0

UUUUUUUUUU




By shaping the nonlinear medium, the stencil can apply an intensity-
dependent focusing phase to the primary
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Through cross-phase modulation, a “stencil” pulse can modify the phase of a “primary” pulse
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By shaping the nonlinear medium, the stencil can apply an intensity-
dependent focusing phase to the primary

UR
LLE

Through cross-phase modulation, a “stencil” pulse can modify the phase of a “primary” pulse
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The temporal profile of the stencil pulse determines the time-dependent
focusing of the primary
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Through cross-phase modulation, a “stencil” pulse can modify the phase of a “primary” pulse
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The temporal profile of the stencil pulse determines the time-dependent
focusing of the primary
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Through cross-phase modulation, a “stencil” pulse can modify the phase of a “primary” pulse
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The temporal profile of the stencil pulse determines the time-dependent
focusing of the primary
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Through cross-phase modulation, a “stencil” pulse can modify the phase of a “primary” pulse
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The focal velocity can be tuned for a given focal range by adjusting the
pulse duration
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A ramp-down stencil produces positive, subluminal focal velocities
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The focal velocity can be tuned for a given focal range by adjusting the
pulse duration
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The focal velocity can be tuned for a given focal range by adjusting the
pulse duration
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The flying focus X produces a focus with ideal wavefront curvature,
enabling spatiotemporal control for an arbitrary transverse profile
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The transverse structure of any Laguerre-Gauss The focus is nearly diffraction limited and

mode (including those with OAM) is preserved the intensity peak can be ultrashort
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structured flying focus* accelerator with an ultrashort pulse**
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Simulations verify that the flying focus X can create an ultrashort duration
orbital angular momentum pulse with a superluminal focal velocity
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Simulations verify that the flying focus X can create an ultrashort duration
orbital angular momentum pulse with a superluminal focal velocity
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Summary/Conclusions

A new method for spatiotemporal control of laser intensity can create pulses with
arbitrary velocity, transverse profile, duration, or orbital angular momentum® __

LLE

Spatiotemporal pulse shaping provides control over the velocity and range of a laser intensity
peak, but existing techniques constrain the duration, profile, or orbital angular momentum

In a nonlinear medium, a temporally shaped, high intensity “stencil” pulse can impart a time-
dependent focusing phase onto a second, “primary” pulse through cross-phase modulation (XPM)

This offloads the constraints of spatiotemporal control onto the copropagating “stencil” pulse

This technique, the “flying focus X”, can create an ultrashort, arbitrary trajectory

iIntensity peak over distances much longer than a Rayleigh range
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