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Summary

A new method for spatiotemporal control of laser intensity can create pulses with 
arbitrary velocity, transverse profile, duration, or orbital angular momentum*

Spatiotemporal pulse shaping provides control over the velocity and range of a laser intensity 
peak, but existing techniques constrain the duration, profile, or orbital angular momentum  

This offloads the constraints of spatiotemporal control onto the copropagating “stencil” pulse

*Simpson et al. (in review) 2021

In a nonlinear medium, a temporally shaped, high intensity “stencil” pulse can impart a time-
dependent focusing phase onto a second, “primary” pulse through cross-phase modulation (XPM)

This technique, the “flying focus X”, can create an ultrashort, arbitrary trajectory 
intensity peak over distances much longer than a Rayleigh range
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A tunable velocity and extended region of high intensity can enable or enhance 
several laser-based applications*

• Chromatic aberration and chirp control 
the time and location of the focus

Conventional optics Spatiotemporal control

• The region of high intensity is limited to the 
Rayleigh range, ZR

• The peak intensity travels at the group velocity, vg

*See presentations by Franke, Palastro, and Ramsey, this session

Spatiotemporal control of laser intensity provides an arbitrary velocity 
intensity peak over distances much larger than a Rayleigh range
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Chromatic focusing of a chirped laser pulse*

*Froula et al. (2018) **Palastro et al. (2020)

WHY

Spherical aberration and a radial delay**

Tunable velocity and transverse profile, but 
intensity peak durations longer than ~1ps

Near transform-limited duration, but limits  
focal velocity and profile

Existing techniques for spatiotemporal control constrain properties, such as 
the transverse profile, duration, or orbital angular momentum
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Through cross-phase modulation, a “stencil” pulse can modify the phase of a “primary” pulse 

𝒏𝒏𝟐𝟐 > 𝟎𝟎

Nonlinear
medium

The constraints of spatiotemporal control can be mitigated by using the 
interaction of two pulses in a nonlinear medium
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Through cross-phase modulation, a “stencil” pulse can modify the phase of a “primary” pulse 

𝒏𝒏𝟐𝟐 > 𝟎𝟎

Kerr lens

By shaping the nonlinear medium, the stencil can apply an intensity-
dependent focusing phase to the primary
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𝒏𝒏𝟐𝟐 > 𝟎𝟎
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Through cross-phase modulation, a “stencil” pulse can modify the phase of a “primary” pulse 

Far field Focal length assuming IS >> IP
𝑓𝑓𝑘𝑘 = R/2n2Is

Radius of 
curvature

Kerr lens

By shaping the nonlinear medium, the stencil can apply an intensity-
dependent focusing phase to the primary
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Through cross-phase modulation, a “stencil” pulse can modify the phase of a “primary” pulse 

𝑰𝑰𝑺𝑺 𝑰𝑰𝑷𝑷

The temporal profile of the stencil pulse determines the time-dependent 
focusing of the primary
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Through cross-phase modulation, a “stencil” pulse can modify the phase of a “primary” pulse 

𝑰𝑰𝑺𝑺 𝑰𝑰𝑷𝑷 𝐿𝐿𝑓𝑓

𝑓𝑓𝑘𝑘(𝑡𝑡)

Time-dependent focal length

𝑓𝑓𝑘𝑘(𝑡𝑡) = R/2n2Is(𝑡𝑡)

Radius of 
curvature

The temporal profile of the stencil pulse determines the time-dependent 
focusing of the primary
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The focal velocity can be tuned for a given focal range by adjusting the 
pulse duration

𝑳𝑳𝒇𝒇/𝒄𝒄Pulse duration
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A long ramp-up stencil produces negative focal velocities

Filter

The focal velocity can be tuned for a given focal range by adjusting the 
pulse duration

𝑳𝑳𝒇𝒇/𝒄𝒄Pulse duration
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The flying focus X produces a focus with ideal wavefront curvature, 
enabling spatiotemporal control for an arbitrary transverse profile 

The transverse structure of any Laguerre-Gauss 
mode (including those with OAM) is preserved

The focus is nearly diffraction limited and 
the intensity peak can be ultrashort

Photon accelerator using a 
structured flying focus*

Dephasingless laser wakefield
accelerator with an ultrashort pulse**

*Franke (this session) **Palastro et al. (2020)
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Simulations verify that the flying focus X can create an ultrashort duration 
orbital angular momentum pulse with a superluminal focal velocity

Re[E] (arb. units)

Near field

0Stencil Primary

Optical configuration
𝑛𝑛2 (cm2/W) 8.5 × 10−15

𝐼𝐼𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 (W/cm2) 1.7 × 1010

Focal length (cm) 60
Initial spot size (cm) 2
𝜏𝜏𝑠𝑠 (fs) 330

Far field
Focal spot size (μm) 10
𝐿𝐿𝑓𝑓 (cm) 1
𝑣𝑣𝑓𝑓/𝑐𝑐 1.01

𝜏𝜏𝑓𝑓 (fs) 20
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Initial spot size (cm) 2
𝜏𝜏𝑠𝑠 (fs) 330
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Focal spot size (μm) 10
𝐿𝐿𝑓𝑓 (cm) 1
𝑣𝑣𝑓𝑓/𝑐𝑐 1.01

𝜏𝜏𝑓𝑓 (fs) 20

Intensity (arb. units) Fluence (arb. units)

Simulations verify that the flying focus X can create an ultrashort duration 
orbital angular momentum pulse with a superluminal focal velocity

𝒗𝒗𝒇𝒇 = 𝟏𝟏.𝟎𝟎𝟎𝟎𝟎𝟎

Far field

𝑳𝑳𝒇𝒇 = 𝟑𝟑𝟑𝟑𝒁𝒁𝑹𝑹
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Summary/Conclusions

*Simpson et al. (in review) 2021

A new method for spatiotemporal control of laser intensity can create pulses with 
arbitrary velocity, transverse profile, duration, or orbital angular momentum*

Spatiotemporal pulse shaping provides control over the velocity and range of a laser intensity 
peak, but existing techniques constrain the duration, profile, or orbital angular momentum  

This offloads the constraints of spatiotemporal control onto the copropagating “stencil” pulse

In a nonlinear medium, a temporally shaped, high intensity “stencil” pulse can impart a time-
dependent focusing phase onto a second, “primary” pulse through cross-phase modulation (XPM)

This technique, the “flying focus X”, can create an ultrashort, arbitrary trajectory 
intensity peak over distances much longer than a Rayleigh range
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