Impact of Bandwidth on the Electron Distribution Functions
of Laser-Produced Plasmas
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High intensity and strong intensity gradients impact heat transport
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* Next-generation broadband laser drivers will open up high-intensity direct-drive ICF design space
 Ponderomotive effects and bandwidth effects are being studied using Vlasov-Fokker-Planck simulations
* Preliminary calculations show broadband IB absorption is in good agreement with monochromatic theory

* An extended set of Fokker-Planck equations are being implemented to enable comprehensive accounting for
ponderomotive effects on transport near the critical density
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Ultra-broadband ICF drivers motivate revisiting classic LPI problems
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* Forthcoming FLUX laser system will achieve Aw/w > 1% —- SRS
2.5 H--&:- TPD/SRS -
« Ultrawide bandwidth will mitigate laser-plasma instabilities*® ' ' .é
* New long-pulse (~100s ns) and high-intensity (~PW/cm?) O i 4

direct-drive ICF design space
« Higher drive pressure - larger fuel mass - higher gain

« Ponderomotive effects on heat transport need to be better
understood both in the monochromatic case, and also with
bandwidth
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* R. K. Follet et al., Phys. Plasmas 28, 032103 (2021).
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The ponderomotive force is as important as temperature gradients for heat
transport near the critical density
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. Kruer, The Physics of Laser — Plasma Interactions (CRC Press, 2003).
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Goncharov and G. Li, Phys. Plasmas 11, 5680 (2004).
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Sharp intensity gradients lead to non-uniform flattening of the distribution
function via the inverse bremsstrahlung absorption
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* A. B. Langdon, Phys. Rev. Lett. 44, 570 (1980).
** E. Fourkal et al., Phys. Plasmas 8, 550 (2001).
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The addition of broadband will affect the feedback cycle between the hydro scale
and the electron kinetic scale
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Detuning shifts the critical point & softens VI Feedback between hydro & kinetic scales

Hydro profile
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Vlasov-Fokker-Planck simulations of inverse bremsstrahlung absorption show
insensitivity to bandwidth
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* M. Sherlock et al., Phys. Plasmas 24, 082706 (2017).
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Standard Fokker-Planck modeling of laser effects misses many transport-
relevant ponderomotive effects
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Not practical to model the laser field directly because w; > v, & 4; < 4,5,

P 0
a’; +3- a—i — e[Eo + E cos(w;t)] - :: = Ceil f1+ Ceelf f]

+ Standard approaches include IB heating and ponderomotive force

0 0
a); ai + (—€Eg + Fyona) - ; Ciglf] + Ceilf]1 + Ceelf, f1 + others

« Careful asymptotic analysis reveals many missing effects of similar order
— Ponderomotive corrections to electron-electron collisions

— Ponderomotive stress ~V - (E E;/w?)

+  We are extending the K2 code to solve time-enveloped VFP equations for a complete account of laser field
effects on heat transport

* A. V. Maximov et al., Sov. J. Plasma Phys. 16, 331 (1990).
**V. N. Goncharov and G. Li, Phys. Plasmas 11, 5680 (2004).
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Summary/Conclusions

High intensity and strong intensity gradients impact heat transport
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* Next-generation broadband laser drivers will open up high-intensity direct-drive ICF design space
 Ponderomotive effects and bandwidth effects are being studied using Vlasov-Fokker-Planck simulations
* Preliminary calculations show broadband IB absorption is in good agreement with monochromatic theory

* An extended set of Fokker-Planck equations are being implemented to enable comprehensive accounting for
ponderomotive effects on transport near the critical density
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