First Demonstration of a Triton Beam Using Target Normal Sheath Acceleration

A. K. Schwemmlein
University of Rochester
Laboratory for Laser Energetics

63d Annual Meeting of the American Physical Society Division of Plasma Physics
Pittsburgh, PA
8–12 November 2021
Target normal sheath acceleration (TNSA) can generate multi-MeV triton beams with miniaturized setups

- Deuterated and tritiated targets were shot on MTW and OMEGA EP
 - 25-μm-thick titanium was tritiated by gas exposure
 - The ion beams were examined using Thomson parabolas
 - The triton beam was used for pitcher – catcher nuclear experiments

- Key discoveries
 - The ion energy spectrum can be manipulated with the laser energy
 - The world’s first TNSA triton beam contained 10^{12} tritons up to 10MeV and induced D–T fusion (10^8 DT neutrons)

MTW: Multi-Terawatt laser
Collaborators

C. E. Fagan, W. T. Shmayda, and M. Sharpe
University of Rochester
Laboratory for Laser Energetics
Tritium Laboratory

C. Stoeckl, C. J. Forrest, and S. P. Regan
University of Rochester
Laboratory for Laser Energetics
OMEGA-EP, MTW Facilities

W. Udo Schroeder
University of Rochester
Motivation

Inducing $T(t, 2n)\alpha$ with a controllable beam provides a “bare-reaction” standard for ICF without plasma effects

Lasers heat outer surface

Ablating material compresses core

Nuclear reactions

ICF: inertial confinement fusion
TNSA can deliver radioactive beams that are challenging to handle for accelerators

- A 25-μm thick target contains \(\sim 10^{16} \) tritons
- The laser produces a hot (~1-MeV) electron cloud at the target rear
- The electrons accelerate a cloud (“beam”) of \(\sim 1 \times 10^{12} \) tritons
- The energy spectrum can be manipulated with the laser
Small-scale MTW experiments were conducted to guide the large-scale OMEGA/OMEGA EP deuteron and triton campaigns.
A Thomson parabola (TPIE*) was used to resolve ions of different q/m and energies.

* Cobble et al., RSI 82 (2011).
The Thomson parabola was equipped with a custom absorber* to eliminate heavy contaminants.

A custom TPIE filter effectively removed all heavy species.
Deuterium beam spectra transition from exponential to quasi-Gaussian with increasing laser energy

- Higher laser energies increase the number of deuterons in the beam
Deuterium beam spectra transition from exponential to quasi-Gaussian with increasing laser energy

• Higher laser energies increase the number of deuterons in the beam
• Low laser energies produce exponential, higher energies quasi-Gaussian spectra

Large ion populations repel so low energies are suppressed.
Deuteron and triton beam spectra are exponential with energies exceeding 10 MeV.
The world’s first TNSA triton beam contained 10^{12} tritons up to 10MeV and induced D–T fusion (10^8 DT neutrons)

OMEGA EP

Neutron spectrum

E29581

Energy (MeV)

Neutrons ($\times 10^8$ MeV)

Experiment

Gaussian fit

Geant4

2×10^{18} W/cm2
laser pulse

$500 \times 500 \times 25$ μm3
tritiated metal

$500 \times 500 \times 100$ μm3
deuterated plastic

nTOF scintillator
Target normal sheath acceleration (TNSA) can generate multi-MeV triton beams with miniaturized setups

- Deuterated and tritiated targets were shot on MTW and OMEGA EP
 - 25-μm-thick titanium was tritiated by gas exposure
 - The ion beams were examined using Thomson parabolas
 - The triton beam was used for pitcher – catcher nuclear experiments

- Key discoveries
 - The ion energy spectrum can be manipulated with the laser energy
 - The world’s first TNSA triton beam contained 10^{12} tritons up to 10MeV and induced D–T fusion (10^8 DT neutrons)
Advantageous kinematics produce a peaked neutron spectrum even with a broad triton spectrum.