First Demonstration of a Triton Beam Using Target Normal Sheath Acceleration

E29785

A. K. Schwemmlein University of Rochester Laboratory for Laser Energetics 63d Annual Meeting of the American Physical Society Division of Plasma Physics Pittsburgh, PA 8–12 November 2021

Summary

Target normal sheath acceleration (TNSA) can generate multi-MeV triton beams with miniaturized setups

- Deuterated and tritiated targets were shot on MTW and OMEGA EP
 - -25- μ m-thick titanium was tritiated by gas exposure
 - The ion beams were examined using Thomson parabolas
 - The triton beam was used for pitcher catcher nuclear experiments
- Key discoveries
 - The ion energy spectrum can be manipulated with the laser energy
 - The world's first TNSA triton beam contained 10¹² tritons up to 10MeV and induced D–T fusion (10⁸ DT neutrons)

Collaborators

C. E. Fagan, W. T. Shmayda, and M. Sharpe

University of Rochester Laboratory for Laser Energetics Tritium Laboratory

C. Stoeckl, C. J. Forrest, and S. P. Regan

University of Rochester Laboratory for Laser Energetics OMEGA-EP, MTW Facilities

W. Udo Schroeder

University of Rochester

Motivation

Inducing T(t, 2n) α with a controllable beam provides a "bare-reaction" standard for ICF without plasma effects

TNSA can deliver radioactive beams that are challenging to handle for accelerators

 A 25-μm thick target contains ~10¹⁶ tritons

- The laser produces a hot (~1-MeV) electron cloud at the target rear
- The electrons accelerate a cloud ("beam") of ~1 ×10¹² tritons
- The energy spectrum can be manipulated with the laser

UR

Small-scale MTW experiments were conducted to guide the large-scale OMEGA/OMEGA EP deuteron and triton campaigns

OMEGA facility, LLE

A Thomson parabola (TPIE*) was used to resolve ions of different q/m and energies

* Cobble et al., RSI <u>82</u> (2011).

The Thomson parabola was equipped with a custom absorber* to eliminate heavy contaminants

A custom TPIE filter effectively removed all heavy species

MTW

٠

Deuterium beam spectra transition from exponential to quasi-Gaussian with increasing laser energy

UR LLE

20

Linear (10 ps)

--- Linear (5 ps)

15

10

10 Higher laser energies increase the • 10 ps number of deuterons in the beam • 5 ps 8 Deuteron/sr (×10¹¹) 6 4 2 0 5 0 Laser energy (J)

E29824

MTW

Deuterium beam spectra transition from exponential to quasi-Gaussian with increasing laser energy

 Higher laser energies increase the number of deuterons in the beam

 Low laser energies produce exponential, higher energies quasi-Gaussian spectra

Large ion populations repel so low energies are suppressed.

OMEGA EP

Deuteron and triton beam spectra are exponential with energies exceeding 10 MeV

E29786

OMEGA EP

The world's first TNSA triton beam contained 10¹² tritons up to 10MeV and induced D–T fusion (10⁸ DT neutrons)

Neutron spectrum

Summary

Target normal sheath acceleration (TNSA) can generate multi-MeV triton beams with miniaturized setups

- Deuterated and tritiated targets were shot on MTW and OMEGA EP
 - -25- μ m-thick titanium was tritiated by gas exposure
 - The ion beams were examined using Thomson parabolas
 - The triton beam was used for pitcher catcher nuclear experiments
- Key discoveries
 - The ion energy spectrum can be manipulated with the laser energy
 - The world's first TNSA triton beam contained 10¹² tritons up to 10MeV and induced D–T fusion (10⁸ DT neutrons)

Backup

Advantageous kinematics produce a peaked neutron spectrum even with a broad triton spectrum

