#### Analysis of Hot-Electron Preheat for High-Performance OMEGA Cryogenic Implosions



D. Patel University of Rochester Laboratory for Laser Energetics 63rd Annual Meeting of the American Physical Society Division of Plasma Physics Pittsburgh, Pennsylvania 8–12 November 2021

# The impact of fast-electron preheat was studied for high-performing cryogenic implosions using the 1-D radiation-hydrodynamic code LILAC

- The preheat in unablated DT fuel is inferred by subtracting hard x-ray signals of cryogenic implosions from the hard x-ray signal of a mass-equivalent warm implosion with a similar pulse shape\*
- The 1-D radiation-hydrodynamic code *LILAC\*\** was used to uniformly deposit the experimentally inferred fast-electron energy into unablated DT
- Simulations suggest reduction in neutron-averaged areal densities of ~20% from hot-electron preheat in high-performance implosions

LLE



<sup>\*</sup> A. R. Christopherson *et al.*, Phys. Rev. Lett. <u>127</u>, 055001 (2021). \*\* J. Delettrez et al., Phys. Rev. A 36, 3926 (1987).

#### **Collaborators**

R. Betti, C. Stoeckl , M. J. Rosenberg, V. Gopalaswamy, J. P. Knauer, S. P. Regan, W. Theobald, and V. Yu. Glebov University of Rochester Laboratory for Laser Energetics

A. R. Christopherson

Lawrence Livermore National Laboratory



## A time-resolved, four-channel hard x-ray detector is used to measure hard x rays generated when fast electrons slow down in the target\*



Channel 3 > 60 keV Channel 4 > 80 keV

- The hard x-ray signal for the 40-keV channel is used to measure the fraction of energy deposited into fast electrons
- Multiple channels with differing energies allow calculation of *T*<sub>hot-e</sub> (assuming Maxwellian distribution)



## Fast-electron energy deposited into the DT layer is inferred from the difference in hard x-ray signals between cryogenic and mass-equivalent warm implosions\*





• HXR<sub>all CD</sub> is the hard x-ray signal from an all-CD implosion with identical pulse shape, target outer radius, and mass as a cryogenic implosion i.e., same fast-electron source

Inferring fast-electron preheat for a cryogenic implosion requires a mass-equivalent warm implosion with identical pulse shapes.



<sup>\*</sup> A. R. Christopherson et al., Phys. Rev. Lett. 127, 055001 (2021).

### Hard x-ray signals for high-yield cryogenic implosions are corrupted by the $(n, n'\gamma)$ signal



- For a high-yield implosion, DT primary neutrons emit  $\gamma$  rays by inelastic scattering  $(n, n'\gamma)$
- The  $\gamma$ -ray signal must be removed to obtain an accurate hard x-ray only signal and reliable preheat inference



Shot 90288  $DT_n = 1.51 \times 10^{14}$ 



## The $(n, n'\gamma)$ signal is well correlated with the neutron yield enabling development of an algorithm to remove the $(n, n'\gamma)$ signal from the HXR signal



- The  $(n, n'\gamma)$  signal is found to be well correlated with the primary DT neutron yield
- To reduce the effect of the hard x-ray signal on the fit, data from a higher filtered (>60-keV) channel are used

There is a High degree of correlation between  $(n, n'\gamma)$  signal and DT yield, which allows its subtraction if a reference  $(n, n'\gamma)$  only signal is available.



### A reference $(n, n'\gamma)$ -only signal is constructed from the hard x-ray signal of a long coasting time implosion

- Overlap of the  $(n, n'\gamma)$  signal and hard x-ray signal is caused by proximity of laser pulse and bang time
- Shots with high coasting phase have well-separated hard x-ray and  $(n, n'\gamma)$  signals



The reference  $(n, n'\gamma)$ -only signal and the  $(n, n'\gamma)$  to neutron yield scaling is used to subtract the  $(n, n'\gamma)$  signal from cryogenic implosions.



LLE

#### Fast-electron preheat was inferred for high-performing OMEGA implosion shot 90288



TC15933

|           | 90288 | 94651 (all<br>CD) |  |
|-----------|-------|-------------------|--|
| ΟD (μm)   | 958   | 984               |  |
| Mass (μg) | 52    | 54                |  |

| 90288 preheat summary              |                       |  |  |
|------------------------------------|-----------------------|--|--|
| All-CD HXR                         | 213 <u>+</u> 21 pC    |  |  |
| Cryo HXR                           | 106±11 pC             |  |  |
| T <sub>hot</sub>                   | 55 $\pm$ 6 keV        |  |  |
| Total <i>E</i> into fast electrons | 42.62±16.39 J         |  |  |
| Total preheat in DT                | 22.46 <u>+</u> 8.51 J |  |  |
| Preheat unablated DT*              | 8.68 <u>+</u> 3.69 J  |  |  |

#### Preheat analysis of a repeat of 90288 (96806) reproduce the energy deposited in unablated DT

\* Assuming energy deposited per unit mass in DT (ablated or unablated) is constant



#### LILAC simulation with experimentally measured preheat can explain lower measured areal density compared to nominal LILAC



|                                                | <i>LILAC</i> + hot electron | Experiment      | LILAC |
|------------------------------------------------|-----------------------------|-----------------|-------|
| Minimum adiabat                                | 7.5                         | N/A             | 5.3   |
| $\langle \rho R \rangle$ (mg/cm <sup>2</sup> ) | 154                         | 160 <u>+</u> 21 | 182   |
| Peak burn-averaged<br>pressure (Gbar)          | 99.1                        | 60              | 125   |



#### Summary/Conclusions

# The impact of fast-electron preheat was studied for high-performing cryogenic implosions using the 1-D radiation-hydrodynamic code LILAC

• The preheat in unablated DT fuel is inferred by subtracting hard x-ray signals of cryogenic implosions from the hard x-ray signal of a mass-equivalent warm implosion with a similar pulse shape\*

- The 1-D radiation-hydrodynamic code *LILAC* was used to uniformly deposit the experimentally inferred fast-electron energy into unablated DT
- Simulations suggest reduction in neutron-averaged areal densities of ~20% from hot-electron preheat in high-performance implosions



LLE





Hot-electron energy deposition profile

\* First reference \*\* Se cond reference † Third reference ‡ Fourth reference

