

H. PANTELL, L. E. HANSEN, G. TABAK, M. F. HUFF, G. BRUHAUG, J. R. RYGG, and G. W. COLLINS **University of Rochester, Laboratory for Laser Energetics**

Motivation

Deuterium and hydrogen have different quantum and chemical behavior. For example, the phase boundaries between ice VI and VII are shifted in D_2O when compared to H₂O as shown on the plot below. These EOS differences between H_2O and D_2O are found within the phases as well [1].

Secondary Motivation

The interiors of the giant ice planets in our solar system contain water at pressures much higher than what is naturally found on Earth. It's been predicted that at these pressures, water is in the superionic phase.

Hydrogen, helium, methane gas Mantle (water, ammonia, methane ices) Core (rock, ice)

Gas Giant Interiors: 2003, NASA/Lunar and Planetary Institute, Accessed 12 October 2021 https://solarsystem.nasa.gov/resources/677/gas-giant-interiors-2003/

Acknowledgments

This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0003856, the University of Rochester, NSF Physics Frontier Center award PHY-2020249, and the New York State Energy Research and Development Authority.

Isotope Effects on High-Pressure Water

We expect these phase differences to continue at higher pressure-temperature conditions, particularly in the superionic ice phase. Here, the H₂O dissociates, leaving a solid oxygen lattice and a permeating hydrogen fluid.

The permeating fluid in superionic D₂O will be D instead of H. How will this effect the behavior of the superionic ice and the location of phase boundaries?

- D₂O principal Hugoniot *SESAME* 07150

EOS: equation of state

Sample Data: Example Analysis

References

[1] P. W. Bridgman, J. Chem. Phys. <u>3</u>, 597 (1935). [4] P. M. Celliers *et al.*, Rev. Sci. Instrum. 75, 4916 (2004). [2] C. W. F. T. Pistorius, E. Rapoport, and J. B. Clark, J. Chem. Phys. <u>48</u>, 5509 (1968). [5] M. C. Gregor *et al.*, Rev. Sci. Instrum. 87, 114903 (2016). [3] M. Millot *et al.*, Nat. Phys. <u>14</u>, 297 (2018). [6] L. Fusheng *et al.*, AIP Conf. Proc. <u>370</u>, 57 (1996).

Targets

