
Sample Data: Example Analysis
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RH equations

* RH: Rankine–Hugoniot

Targets
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Diamond-anvil cell (DAC) fi lled with D2O: these DAC’s compressed the D2O to a range of 
pressures from 0 to 1 GPa before dynamically compressing the sample on the OMEGA-60 
laser. Planned follow-up experiments will precompress the D2O up to 2.5 GPa.
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Motivation
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Deuterium and hydrogen have different quantum and chemical behavior. For 
example, the phase boundaries between ice VI and VII are shifted in D2O 
when compared to H2O as shown on the plot below. These EOS differences 
between H2O and D2O are found within the phases as well [1].
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We expect these phase 
differences to continue at 
higher pressure–temperature 
conditions, particularly in the 
superionic ice phase. Here, 
the H2O dissociates, leaving 
a solid oxygen lattice and a 
permeating hydrogen fl uid. 

The permeating fl uid in 
superionic D2O will be D 
instead of H. How will this 
effect the behavior of the 
superionic ice and the location 
of phase boundaries?

EOS: equation of state

Future Work
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As we work through 
the data we have, 
along with data 
we plan to take 
in May 2022, the 
phase space below 
will be populated 
with D2O data, and 
comparisons to H2O 
data will be possible. 0 100 200 300 400
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VISAR [4]: Velocity sensing interferometer 
Measures the velocity of the shock front as it moves through the 
target; impedance matching between quartz and D2O is used to 
obtain the velocity in D2O

SOP [5]: Streaked optical pyrometer
Measures the temperature of the shocked material

Diagnostics

VISAR

Etalon

Streak
camera

Secondary Motivation
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The interiors of the giant ice planets in our solar system contain water at 
pressures much higher than what is naturally found on Earth. It’s been 
predicted that at these pressures, water is in the superionic phase.

Gas Giant Interiors: 2003, NASA/Lunar and Planetary Institute, Accessed 12 October 2021, 
https://solarsystem.nasa.gov/resources/677/gas-giant-interiors-2003/.
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