S-Factor Measurements for Gamma-Channel Fusion Reactions

Zaarah Mohamed University of Rochester Laboratory for Laser Energetics

ROCHESTER

63rd Annual Meeting of the American Physical Society Division of Plasma Physics Pittsburgh, PA 8-13 November 2021

Summary

Temporally resolved Cherenkov detectors were used to study gamma-channel fusion reactions D(T,⁵He) γ , H(D,³He) γ , and H(T,⁴He) γ

- Target and laser parameters were varied on OMEGA implosions to span a wide range of ion temperatures
- Branching ratios/S factors were determined over ion temperatures 4-18 keV

Reaction	γ energy (MeV)	ICF measurement
D(T,⁵He)γ	10 - 17.5	Branching ratio
H(T,⁴He)γ	19.8	S factor
H(D,³He)γ	5.5	S factor

Collaborators

J. P. Knauer, A. Sorce, R. B. Brannon, R. T. Janezic, W. T. Shmayda University of Rochester Laboratory for Laser Energetics

Y. H. Kim, K. Meaney, H. Geppert-Kleinrath, N. M. Hoffman Los Alamos National Laboratory

> M. S. Rubery, A. B. Zylstra, J. Jeet Lawrence Livermore National Laboratory

The S factor is used to determine the rate of fusion reactions as they occur in high-density astrophysical environments

•
$$S(E) = \frac{E}{\exp(-2\pi\eta)}\sigma(E), \quad \eta = \frac{Z_1Z_2\alpha e^2}{\hbar v}$$

- S factor accounts for Coulomb repulsion between the reactants via Gamow factor $exp(-2\pi\eta)$

 S factor for gamma branch fusion reactions can be determined in reference to neutron branch

$$\mathbf{S}_{HD\gamma} = \mathbf{S}_{DDn} \frac{\mathbf{Y}_{HD\gamma}}{\mathbf{Y}_{DDn}} \left[\frac{\mathbf{n}_{D} \mathbf{A}_{HD}}{2\mathbf{n}_{H} \mathbf{A}_{DT}} \frac{\boldsymbol{\xi}_{DD}^{2} \mathbf{e}^{-3\boldsymbol{\xi}_{DD}}}{\boldsymbol{\xi}_{HD}^{2} \mathbf{e}^{-3\boldsymbol{\xi}_{HD}}} \right]$$

OMEGA offers a unique opportunity to study these astrophysicallyrelevant reactions in a plasma environment.

Carbon calibration* is currently the best method of calibrating gamma time-of-flight detectors for use at ICF facilities

- Implosion-based experiments occur on short time scales
 - Calibration methods for traditional pulse-height gamma detectors cannot be used

^{• *}Zylstra et al., "Improved calibration of the OMEGA gas Cherenkov detector." RSI 90 (2019): 123504.

DT γ -to-n branching ratio was determined based on DAD data with carbon calibration

- Data set included 52 *cryogenic* DT shots with ion temperatures 2.7- 6.4 keV (E_{CM} = 14-26 keV)
- Branching ratio = $\frac{Y_{DT\gamma}}{Y_{DTn}}$, with $Y_{\gamma} = \frac{A_{\gamma}}{\Omega R e QE G} \frac{1}{C_{ph}(E_{\gamma}) \chi} \longrightarrow \frac{Y_{DT\gamma}}{Y_{DTn}} = \frac{A_{DT\gamma}}{Y_{DTn}} \frac{1}{\Omega R e QE G} \frac{1}{C_{ph}(E_{\gamma}) \chi}$
- Response must be weighted by characteristic DT γ energy spectrum*

*Horsfield *et al.*, "First spectral measurement of deuterium-tritium fusion γ rays in inertial fusion experiments." *PRC 104* (2021): 024610.

DT γ -to-n branching ratio was determined based on DAD data with carbon calibration

- Final branching ratio of (8.42 ± 0.86_{stat} ± 1.98_{sys}) x 10⁻⁵
 - Uncertainty includes contribution from Cherenkov statistics*
- This is ~2x larger than the previous implosion-based measurement**, but agrees within error bars
 - This measurement is more consistent with accelerator measurements of γ_0 if the recently

- Mohamed *et al.*, "Updated DT gamma-to-neutron branching ratio determined using HED plasmas." In preparation, to be submitted to *PRC*.
- *Zylstra *et al.*, "²H(p,γ)³He cross section measurement using high-energy-density plasmas." *PRC* (2020): 042802.
- **Kim *et al.*, "D-T Gamma-to-Neutron Branching Ratio Determined from Inertial Confinement Fusion Plasmas." *PoP 19* (2012): 056313.
- ***Horsfield *et al.*, "First spectral measurement of deuterium-tritium fusion γ rays in inertial fusion experiments." *PRC 104* (2021): 024610.

HT & HD experiments were designed to span a wide range of ion temperatures

 Ion temperature was varied using fill pressure, laser energy, and/or pulse shape

	H(T,⁴He)γ Eγ = 19.8 MeV	H(D,³He)γ Eγ = 5.5 MeV
Neutrons measured from	D(T, ⁴ He)n	D(D, ³ He)n
lon temperatures (keV)	4.6, 9.0, 12.7	5.2, 7.6, 16.3
CM energies (keV)	18, 28, 36	18, 23, 40
Gamma background from	D(T, ⁵ He)γ *	D(D, ⁴ He)γ
Gamma detectors	GCD-1 (100 psi CO ₂)	GCD-3 (400 psi CO ₂)

^{*}Kim et al., "D-T Gamma-to-Neutron Branching Ratio Determined from Inertial Confinement Fusion Plasmas." PoP 19 (2012): 056313.

H(T,⁴He)γ S factor was inferred using the D(T,⁴He)n S factor** as reference

- Only one previous measurement was available within this range of low CM energies
- Trend in GCD-1 measurement appears to agree with fit to accelerator data*

- *Canon *et al.*, " 3 H(p, γ)⁴He reaction below Ep = 80 keV." *PRC* (2002): 044008.
- **Bosch & Hale, "Improved formulas for fusion cross-sections and thermal reactivities." *Nucl. Fus.* 92 (1992): 043546.

H(D,³He)γ S factor was inferred using the D(D,³He)n S factor** as reference

- Relatively large error bar is due to calibration uncertainty (13%)** and statistics
 - Could be improved with additional shot days to improve statistical uncertainty
- The inferred S factor appears to agree with accelerator results

^{• *}Bosch & Hale, "Improved formulas for fusion cross-sections and thermal reactivities." Nucl. Fus. 92 (1992): 043546.

^{• **}Zylstra et al., "Improved calibration of the OMEGA gas Cherenkov detector." RSI 90 (2019): 123504.

Summary

Temporally resolved Cherenkov detectors were used to study gamma-channel fusion reactions $D(T, {}^{5}He)\gamma$, $H(D, {}^{3}He)\gamma$, and $H(T, {}^{4}He)\gamma$

- Target and laser parameters were varied on OMEGA implosions to span a wide range of ion temperatures
- Branching ratios/S factors were determined over ion temperatures 4-18 keV

Reaction	γ energy (MeV)	ICF measurement
D(T,⁵He)γ	10 - 17.5	Branching ratio
H(T,⁴He)γ	19.8	S factor
H(D,³He)γ	5.5	S factor

Backup slides

Cherenkov detectors were used to study γ -branch fusion reactions D(T,⁵He) γ , H(D,³He) γ , H(T,⁴He) γ

Gas Cherenkov Detectors (GCD-1/GCD-3)

- TIM-based detectors
- Pressurized gas is used as Cherenkov radiator

Diagnostic for Areal Density (DAD)

- Located on target chamber wall
- Quartz is used as Cherenkov radiator

Rubery et al., "First measurements of remaining shell areal density on the OMEGA laser using the Diagnostic for Areal Density (DAD)." RSI 89 (2018): 083510.

[•] Berggren *et al.*, "Gamma-ray-based fusion burn measurements." *RSI* 72 (2001): 873.

McEvoy *et al.*, "Gamma ray measurements at OMEGA with the Newest Gas Cherenkov Detector GCD-3." *J. Phys. Conf. Ser* 717 (2016): 012109.

Carbon calibration* is currently the best method of calibrating gamma time-of-flight detectors for use at ICF facilities

- Implosion-based experiments occur on short time scales
 - Calibration methods for traditional pulse-height gamma detectors cannot be used

^{• *}Zylstra et al., "Improved calibration of the OMEGA gas Cherenkov detector." RSI 90 (2019): 123504.

Gamma rays can be measured using Cherenkov detectors

- These detectors usually consist of a crystal, glass, or reservoir of gas coupled to a photomultiplier tube (PMT)
- Incident gamma rays Compton scatter with electrons
 - If an electron has a speed greater than c/n, electromagnetic radiation is produced in the form of photons ("Cherenkov radiation")
- Cherenkov detectors can also detect neutrons
 - Neutrons strike a nucleus, which enters an excited state and emits a gamma ray when returning to the ground state

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/comptint.html

Error analysis for gamma-channel reactions includes statistical contribution from Cherenkov photons*

- Poisson statistics are applicable to the number of detector events (i.e., Cherenkov electrons)
 - Each electron can produce several Cherenkov photons
 - There is variation in the bunch size
- Statistical uncertainty can be calculated such that

$$\sigma_N = N \sqrt{\frac{1}{N_{Ch}} + \frac{V_{Ch}}{\mu_{Ch}N}} + \sqrt{N}$$

- N_{Ch} = number of Cherenkov photons
- μ_{Ch} = mean bunch size
- V_{Ch} = variance of the bunch size
- $N = N_{Ch}/\mu_{Ch}$ = number of detector events (i.e., number of Cherenkovradiating electrons)

Cherenkov photon and bunch size distributions were generated via Geant-4 simulations* performed by M. S. Rubery (LLNL)

UR