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Long wavelength perturbations in the ablator create larger acceleration phase

instability seeds compared to those in the ice .
LLE

+ A comprehensive understanding of the impact of internal defects is needed to identify
the seeds for instability growth and thereby design more robust implosions

* Internal perturbations undergo complex wave dynamics as they interact with multiple
shock waves and interfaces within layered target designs

+ Ablator layer perturbations experience hydrodynamic gradients during the beginning
of the implosion which allow the ablation front to grow sooner and increase seed
amplitudes when compared to ice
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ICF target imperfections seed instability growth and can originate from various

sources
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A surrogate OMEGA pulse and target helps to demonstrate the complexity of
tracking internal perturbations and seeding mechanisms

UR
LLE

150

40 pm

Internal perturbations
within ice/ablator layers

Position [um]

90+ Shock merge at
gas interface 100 ym
80 T . | : . .
0.0 0.2 0.4 0.6 0.8 1.0 1.2
J
0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time [ns]

UNIVERSITY of

< ‘e'/ A




Reflected rarefaction waves from the material interface carry perturbation
information out to the ablation front and relax the density of the outer surface
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When the first shock hits a perturbation, three primary waves are created that carry
information about this event throughout the target
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As the shock wave moves inward, it is a continual source of oscillation and vorticity
which propagate along entropy waves

UR
LLE

150

Wave Definitions:

E
E o _
< Entropy : i U
:§ dx*
+. -
a C™: " U+cg

_ dx~
C .dt—U Cs

0.0 0.2 0.4 0.6 0.8 1.0 1.2 .
U: Velocity
J ¢s: Sound speed
0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time [ns]

(WELIORA)
Q, A

OCHESTER e



< ‘e'/ A

The rise in the main pulse launches a compression wave and converging C-
characteristics that will amplify velocity perturbations
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Velocity perturbations from the ablation front
traveling along converging characteristics will
experience amplification2

V. N. Goncharov, APS DPP 2019 PO7.001
2 8. C. Miller, APS DPP 2019 PO7.002



Internal perturbation evolution and instability seeding was studied using a
simplified multi-physics code that couples hydrodynamics with thermal conductl_i’gn
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 Single-material, low-dissipation 2D finite volume Riemann solver(") with 5t order spatial
reconstruction®

» 2D ADI thermal conduction solver with Spitzer conductivity
* Energy deposition via thermal source term
+ Internal density perturbations: single-mode, isolated void, etc.

2D planar geometry, Eulerian grid

V=0 Outflow
BC Gas Corona BC

Internal perturbations within ice/ablator layers

1 Kim, K. H., Kim, C. & Rho, O.H. Journal of Computational Physics 174, 38—-80 (2001)
2 Kim, K. H. & Kim, C. Journal of Computational Physics 208, 570-615 (2005)
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Long wavelength, single-mode perturbations in the ablator create larger acceleration

phase instability seeds compared to those in the ice .
LLE
1.00 A=100 ym Ablation Front Distortion Ablation Front Seed Amplitudes
] ' 0-2571_ =40 ym |
— A=60 um
020, | —A=100 ym
o £
T Ablator =S
= [+}]
‘o B 0.15
8 =
= £
g_o_m- <010 Ablator
< ®
[+]
7]
0.05-
———
————
1 : : ! : ! Acoeleratioq phase 000_ ; ; - ; : : ; ; :
0.0 0.2} 0.4 0.6 0.8 1.0 1.2 105 110 115 120 125 130 135 140 145
Perturbation at Time [ns] Initial Perturbation Location [um)]

material interface

< ‘@ ol




Growth at the ablation front prior to acceleration is dictated by the pressure and

density gradients created by shock and material interface interactions
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Short wavelength ablator perturbations are influenced more by oscillation and the
distorted material interface compared to long wavelengths and those in ice
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Summary/Conclusion

Long wavelength perturbations in the ablator create larger acceleration phase
instability seeds compared to those in the ice
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+ A comprehensive understanding of the impact of internal defects is needed to identify
the seeds for instability growth and thereby design more robust implosions

* Internal perturbations undergo complex wave dynamics as they interact with multiple
shock waves and interfaces within layered target designs

+ Ablator layer perturbations experience hydrodynamic gradients during the beginning
of the implosion which allow the ablation front to grow sooner and increase seed
amplitudes when compared to ice

* Future work will study optimal ablator thickness designs based on the findings of both
long and short wavelength internal perturbations
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