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4 Understanding early stages of ICF requires the modeling of
charged particle stopping in Warm Dense Matter.

4 Quantum Hydrodynamics offers a computationally-efficient
treatment of dynamical and quantum-mechanical electrons.

d Here, a QHD model is derived from first-principles, which
reproduces Thomas-Fermi degeneracy pressure, a gradient-
dependent Bohm pressure, Dirac Exchange potential

4 Linearized QHD gives rise to a dimensionless parameter
describing the electrons' diffractive character. For projectile
stopping, these effects are enhanced and the applicable
diffractive region in parameter space is broadened.
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4 A quantum electron fluid model can simulate dynamical screening in WDM
iIn @ computationally-efficient way.

proved equivalence between single-particle

1 Madelung (1927) first proposed this, and [ }
Schrodinger Equation and Euler Equations.

4d Bohm (1952) applied Madelung's approach ll
to many-bodies, but interpreted as (
deterministically evolving quasi-particle
trajectories, instead of hydrodynamically.

U We need rigorously-derived many-body
Quantum Hydrodynamic equations, in
particular generalizing the quantum Bohm
potential.

4 This is done next.
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W WmW=== ® can be recast as Hydrodynamic Equations &

d The Time-dependent Schrodinger
Equation is expanded with an N-body
- Madelung ansatz

4 N Un({r:ht) = \/“:E - (5 Lﬂ]

f

d The 3N-dimensional Density & Action
are projected to 3-d fluid quantities
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20 g (I040) _ g (b4 q) - vVee The Quantum evolution satisfies

Hydrodynamic Equations, with
classical and quantum pressure
tensors, and external and inter-particle
potentials with correlations.
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4 Wave Function (Anti-)Symmetry
is imposed for an arbitrary state
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d First approximation: Slater
determinant of arbitrary single-
electron orbitals.
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' Orbitals are Plane-waves of

Wave-function (anti-)symmetry and other
constraints are enforced
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LGN In the Fermi limit, QHD becomes Thomas- |t
CENTE Fermi-Bohm-Dirac Hydrodynamics \@/

d Finally, the occupancy of the orbitals is assumed Fermi energy degenerate, and
taken in the Local Density Approximation.

d The resulting Thomas-Fermi-Bohm-Dirac QHD equations are:
~ I

N /

The Pressure tensor consists of "classical" and quantum terms: Thomas-
Fermi, and Bohm, which contains a scaling parameter 1/9 < A < 1.

' The total Potential consists of the external and mean-field Hartree
electrostatic interactions, as well as the Dirac exchange potential.

0 Next, their linear response is studied.
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U QHD equations can be linearized and solved for Susceptibility/Dielectric.
Here, finite-T generalizations (in terms of Fermi Integrals) are used.

U The Thomas-Fermi length describes screening,
which reduces to Debye in the classical limit.

U A Kirzhnits length from the gradient-correction
is proportional to particle spacing (degenerate)
and de Broglie wavelength (non-degenerate).

Diffractive Parameter:[ ]

v A Dimensionless Diffractive Parameter
describes the character of the plasma
response in parameter space.

[ 2, <1: Regular Fermi/Debye exponential
screening.

100

d ZK>1: Diffractive, stationary Freidel-like
101 spatial oscillations.
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J Linearized QHD describes Dielectric response to a charged projectile

4 The ratio of projectile to Fermi velocity [ }
characterizes the QHD screening response.

Analytic solutions.

4 Thomas-Fermi screening separates into
sub- and super-thermal regimes

B<l  p>1

> = ‘26/\;"—/)\117 d The Diffractive Parameter is

Simulation with modified by the projectile velocity
QHD+MD code Nereid.

J Diffractive effects are enhanced
near the Fermi velocity.
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