

A Many-Body Extension to Madelung Quantum Hydrodynamics

David Michta Flash Center for Computational Science Department of Physics and Astronomy University of Rochester APS DPP 2021 Pittsburgh, PA 2021-11-09

P. Tzeferacos¹, F. Graziani², G.W. Hammett³

- 1. University of Rochester, Rochester, NY
- 2. Lawrence Livermore National Laboratory, Livermore, CA
- 3. Princeton University, Princeton, NJ

The Flash Center acknowledges support by the U.S. DOE ARPA-E under Award DE-AR0001272, the NSF under Award PHY-2033925, and the U.S. DOE NNSA under Awards DE-NA0003842 and DE-NA0003856, and Subcontracts 536203 and 630138 with LANL and B632670 with LLNL. This work was performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

- Understanding early stages of ICF requires the modeling of charged particle stopping in Warm Dense Matter.
- Quantum Hydrodynamics offers a computationally-efficient treatment of dynamical and quantum-mechanical electrons.
- Here, a QHD model is derived from first-principles, which reproduces Thomas-Fermi degeneracy pressure, a gradientdependent Bohm pressure, Dirac Exchange potential
- Linearized QHD gives rise to a dimensionless parameter describing the electrons' diffractive character. For projectile stopping, these effects are enhanced and the applicable diffractive region in parameter space is broadened.

Charged Particle Stopping in Warm Dense Matter is important to Inertial Confinement Fusion

- Warm Dense Matter (WDM) occurs in laser and ion-beam plasma experiments, namely early stages of ICF implosion.
- Electrons are moderately Coulomb-Coupled and partially Quantum-Degenerate.
- Can be modeled with: Ab-Initio Molecular Dynamics (MD) with Density Functional Theory (DFT), Quantum Monte Carlo, etc.

Intermediate: Bound States

Fast:

- Charged Particle (CP) Stopping of fast alphas is source of bootstrap heating in ICF.
- Stopping of intermediate projectiles near the e- thermal velocity is affected by quantum bound effects.

Modeling CP stopping in WDM must include dynamically-screening quantum-mechanical electrons.

A Quantum Hydrodynamic approach is well suited for CP stopping in WDM

- A quantum electron fluid model can simulate dynamical screening in WDM in a computationally-efficient way.
- Madelung (1927) first proposed this, and proved equivalence between single-particle Schrodinger Equation and Euler Equations.
- Bohm (1952) applied Madelung's approach to many-bodies, but interpreted as deterministically evolving quasi-particle trajectories, instead of hydrodynamically.
- We need rigorously-derived many-body Quantum Hydrodynamic equations, in particular generalizing the quantum Bohm potential.
- This is done next.

Many-body Schrodinger Dynamics can be recast as Hydrodynamic Equations

$$\Psi_{\mathbf{N}}(\{\mathbf{r}_i\}, t) \equiv \sqrt{\frac{n_{\mathbf{N}}}{N}} \exp\left(i\frac{S_{\mathbf{N}}}{\hbar}\right)$$

 $\frac{\partial n_{\mathbf{N}}}{\partial t}$

 $(\prod d\mathbf{r}_j)$

The 3N-dimensional Density & Action are projected to 3-d fluid quantities

 $\int (\prod d\mathbf{r}_j) \frac{\partial}{\partial t} (n_N \nabla_k S_N)$

$$\begin{aligned} \frac{\partial n(\mathbf{r})}{\partial t} + \nabla \cdot \mathbf{j}(\mathbf{r}) &= 0, \\ m \frac{\partial \mathbf{j}(\mathbf{r})}{\partial t} + m \nabla \cdot \left(\frac{\mathbf{j}(\mathbf{r}) \mathbf{j}(\mathbf{r})}{n(\mathbf{r})} \right) &= -\nabla \cdot \left(\mathbf{P}(\mathbf{r}) + \mathbf{Q}(\mathbf{r}) \right) - n(\mathbf{r}) \nabla V(\mathbf{r}) \\ &- (N-1) \int d\mathbf{r}' n(\mathbf{r}, \mathbf{r}') \nabla \phi(|\mathbf{r} - \mathbf{r}'|), \end{aligned}$$

The Quantum evolution satisfies **Hydrodynamic Equations**, with classical and quantum pressure tensors, and external and inter-particle potentials with correlations.

- Finally, the occupancy of the orbitals is assumed Fermi energy degenerate, and taken in the Local Density Approximation.
- □ The resulting **Thomas-Fermi-Bohm-Dirac QHD equations** are:

- The Pressure tensor consists of "classical" and quantum terms: Thomas-Fermi, and Bohm, which contains a scaling parameter $1/9 < \lambda < 1$.
- The total Potential consists of the external and mean-field Hartree electrostatic interactions, as well as the Dirac exchange potential.
- Next, their linear response is studied.

Linearized QHD predicts Scr<u>eening and Diffractive regimes</u>

- QHD equations can be linearized and solved for Susceptibility/Dielectric. Here, finite-T generalizations (in terms of Fermi Integrals) are used.
- The Thomas-Fermi length describes screening, which reduces to Debye in the classical limit.
- A Kirzhnits length from the gradient-correction is proportional to particle spacing (degenerate) and de Broglie wavelength (non-degenerate).

- A **Dimensionless Diffractive Parameter** describes the character of the plasma response in parameter space.
- Σ_κ<1: Regular Fermi/Debye exponential screening.</p>
- **Σ_κ>1**: Diffractive, stationary Freidel-like spatial oscillations.

Charged projectile stopping enhances diffractive effects

- Linearized QHD describes Dielectric response to a charged projectile
- The ratio of projectile to Fermi velocity characterizes the QHD screening response.
- Thomas-Fermi screening separates into sub- and super-thermal regimes

$$\Sigma'_K = \frac{2\lambda_K/\lambda_F}{|\beta^2 - 1|}$$

Simulation with QHD+MD code Nereid.

Σ'_κ > 1

- The Diffractive Parameter is modified by the projectile velocity
- Diffractive effects are enhanced near the Fermi velocity.

- Understanding early stages of ICF requires the modeling of charged particle stopping in Warm Dense Matter.
- Quantum Hydrodynamics offers a computationally-efficient treatment of dynamical and quantum-mechanical electrons.
- Here, a QHD model is derived from first-principles, which reproduces Thomas-Fermi degeneracy pressure, a gradientdependent Bohm pressure, Dirac Exchange potential
- Linearized QHD gives rise to a dimensionless parameter describing the electrons' diffractive character. For projectile stopping, these effects are enhanced and the applicable diffractive region in parameter space is broadened.