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Summary 

 Understanding early stages of ICF requires the modeling of
charged particle stopping in Warm Dense Matter. 

 Quantum Hydrodynamics ofers a computationally-efcient
treatment of dynamical and quantum-mechanical electrons. 

 Here, a QHD model is derived from frst-principles, which
reproduces Thomas-Fermi degeneracy pressure, a gradient-
dependent Bohm pressure, Dirac Exchange potential 

 Linearized QHD gives rise to a dimensionless parameter
describing the electrons' difractive character.  For projectile
stopping, these efects are enhanced and the applicable
difractive region in parameter space is broadened. 
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Charged Particle Stopping in Warm Dense Matter 
is important to Inertial Confnement Fusion 

 Warm Dense Matter (WDM) occurs in laser 
and ion-beam plasma experiments, namely
early stages of ICF implosion. 

 Electrons are moderately Coulomb-Coupled
and partially Quantum-Degenerate. 

 Can be modeled with: Ab-Initio Molecular 
Dynamics (MD) with Density Functional
Theory (DFT), Quantum Monte Carlo, etc. 

Source: LLE 

 Charged Particle (CP) Stopping of fast 
alphas is source of bootstrap heating in ICF. 

 Stopping of intermediate projectiles near 
the e- thermal velocity is afected by
quantum bound efects. 

 Modeling CP stopping in WDM must 
include dynamically-screening 

Slow: Fast: quantum-mechanical electrons. 
Dielectric Fluid Binary Scattering 

Intermediate: 
Bound States 



A Quantum Hydrodynamic approach is 
well suited for CP stopping in WDM 

 A quantum electron fuid model can simulate dynamical screening in WDM 
in a computationally-efcient way. 

 Madelung (1927) frst proposed this, and
proved equivalence between single-particle
Schrodinger Equation and Euler Equations. 

 Bohm (1952) applied Madelung's approach 
to many-bodies, but interpreted as
deterministically evolving quasi-particle
trajectories, instead of hydrodynamically. 

 We need rigorously-derived many-body 
Quantum Hydrodynamic equations, in 
particular generalizing the quantum Bohm
potential. 
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 This is done next. 



Many-body Schrodinger Dynamics 
can be recast as Hydrodynamic Equations 

 The Time-dependent Schrodinger 
Equation is expanded with an N-body
Madelung ansatz 
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 The 3N-dimensional Density & Action 
are projected to 3-d fuid quantities 

 The Quantum evolution satisfes
Hydrodynamic Equations, with 
classical and quantum pressure
tensors, and external and inter-particle
potentials with correlations. 



Wave-function (anti-)symmetry and other 
constraints are enforced 

 Wave Function (Anti-)Symmetry
is imposed for an arbitrary state 

 First approximation: Slater 
determinant of arbitrary single-
electron orbitals. 
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 Orbitals are Plane-waves of 
arbitrary density distribution. 

Recovers a 
Bohm pressure
of the many-
body density 



In the Fermi limit, QHD becomes Thomas-
Fermi-Bohm-Dirac Hydrodynamics 

 Finally, the occupancy of the orbitals is assumed Fermi energy degenerate, and
taken in the Local Density Approximation. 

 The resulting Thomas-Fermi-Bohm-Dirac QHD equations are: 
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 The Pressure tensor consists of "classical" and quantum terms: Thomas-
Fermi, and Bohm, which contains a scaling parameter 1/9 < λ < 1. 

 The total Potential consists of the external and mean-feld Hartree 
electrostatic interactions, as well as the Dirac exchange potential. 

 Next, their linear response is studied. 



Linearized QHD predicts
Screening and Difractive regimes 

 QHD equations can be linearized and solved for Susceptibility/Dielectric.
Here, fnite-T generalizations (in terms of Fermi Integrals) are used. 

 The Thomas-Fermi length describes screening,
which reduces to Debye in the classical limit. 

 A Kirzhnits length from the gradient-correction
is proportional to particle spacing (degenerate)
and de Broglie wavelength (non-degenerate). 

Diffractive Parameter: Σ
K
≡ 2λ

K
/λ

F 

Γ<1 

Θ>1 

Σ<1 

Σ
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K
/λ
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 A Dimensionless Difractive Parameter 
describes the character of the plasma 
response in parameter space. 

 ΣK<1: Regular Fermi/Debye exponential 

screening. 

 ΣK>1: Difractive, stationary Freidel-like 

spatial oscillations. 



Charged projectile stopping enhances 
difractive efects 

 Linearized QHD describes Dielectric response to a charged projectile 

 The ratio of projectile to Fermi velocity
characterizes the QHD screening response.

Analytic solutions. 
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 Thomas-Fermi screening separates into 
sub- and super-thermal regimes 

β < 1  β > 1 

 The Difractive Parameter is 
modifed by the projectile velocity Simulation with 

QHD+MD code Nereid. 

 Difractive efects are enhanced 
near the Fermi velocity. 

Σ'
K
 > 1 
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Summary 

 Understanding early stages of ICF requires the modeling of
charged particle stopping in Warm Dense Matter. 

 Quantum Hydrodynamics ofers a computationally-efcient
treatment of dynamical and quantum-mechanical electrons. 

 Here, a QHD model is derived from frst-principles, which
reproduces Thomas-Fermi degeneracy pressure, a gradient-
dependent Bohm pressure, Dirac Exchange potential 

 Linearized QHD gives rise to a dimensionless parameter
describing the electrons' difractive character.  For projectile
stopping, these efects are enhanced and the applicable
difractive region in parameter space is broadened. 
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