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Measurements of the neutron energy spectrum emitted from high
temperature shock driven implosions are inconsistent with a
Maxwellian plasma model

- The primary DT and DD neutron energy spectrum generated in laser direct drive inertial
confinement fusion implosions were measured using a suite of neutron time of flight (nTOF)
detectors on the OMEGA 60 laser

+ Measurements of the primary DD neutron energy spectrum are inconsistent with a
Maxwellian plasma model for the high-temperature, more-kinetic-like experiments

- Vlasov-Fokker—Planck (VFP) simulations reproduce the trend observed in the primary DD
neutron energy spectrum measurements and suggest the presence of a bimodal ion velocity
distribution in the high-temperature experiments

These results indicate that inferring a thermal plasma ion temperature from primary

neutron energy spectrum measurements is not possible for kinetic plasmas

1. B. Appelbe, et al., GO07.00008, this conference



The neutron energy spectrum emitted from a single
temperature Maxwellian plasma is well understood
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2. L. Ballabio, Nuclear Fusion 38 (11), (1998).



The neutron energy spectrum emitted from a single
temperature Maxwellian plasma is well understood
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The neutron energy spectrum emitted from a single
temperature Maxwellian plasma is well understood
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For a single temperature Maxwellian plasma a unique relationship
exists between the Gamow energy shift and the plasma temperature
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A Maxwellian plasma with a distribution of ion temperatures in
space and time can reduce the Gamow shift for a given spectral
temperature
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Measurements that fall outside of the Maxwellian fluid regime would

provide direct evidence of a non-Maxwellian distribution
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A set of experiments were performed to test the Maxwellian
plasma neutron energy spectrum model

20 um Strong CD

T, < 6 keV T, ~ 10 keV T, >15keV
Ny < 1 Ny~ 1 Ny > 1

The laser power, shell thickness, and gas pressure
were varied to achieve different conditions




The 3dnToF detector suite was used to measure the primary DT
and DD neutron energy spectrum along multiple lines of sight
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The plasma apparent ion temperature, bulk velocity, and

Gamow shift was inferred from these measurements

1. O. M. Mannion et al., Nucl. Instrum. Methods Phys.
Res., Sect. A 964, 163774 (2020).
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Measurements of the Gamow shift agree with the Maxwellian
fluid theory for low temperature implosions but show
discrepancies for high temperature implosions
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The anomalous DD data points suggest the presence of a non-

Maxwellian ion velocity distribution in these kinetic implosions
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The multi-ion Vlasov-Fokker-Planck (VFP) code iFP' was used
to study the anomalous high temperature implosion results

- iFP calculations were initiated half way 0.5
through the laser pulse using the
hydrodynamic profiles from a radiation 0.4
hydrodynamic simulation 3
- The ion velocity distribution of each ion = 0.3
species was calculated by solving the E
VFP equations on a discrete velocity grid # 0.2
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The long mean free paths leads to a smoothing out of the implosions shock front

1. W. T. Taitano, Physics of Plasmas 25 (5) (2018).



12

The diffuse shock front leads to a bimodal ion velocity
distribution at peak neutron production in the iFP simulations
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The bimodal ion velocity distribution produces a narrower neutron energy spectrum

1. B. Appelbe, et al., GO07.00008, this conference
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The iFP simulations reproduce the trend observed in the high
temperature DD primary neutron spectra data
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The iFP bimodal ion velocity distribution predictions are

consistent with the high temperature DD measurements




Measurements of the neutron energy spectrum emitted from high
temperature shock driven implosions are inconsistent with a
Maxwellian plasma model

- The primary DT and DD neutron energy spectrum generated in laser direct drive inertial
confinement fusion implosions were measured using a suite of neutron time of flight (nTOF)
detectors on the OMEGA 60 laser

+ Measurements of the primary DD neutron energy spectrum are inconsistent with a
Maxwellian plasma model for the high-temperature, more-kinetic-like experiments

- Vlasov-Fokker—Planck (VFP) simulations reproduce the trend observed in the primary DD
neutron energy spectrum measurements and suggest the presence of a bimodal ion velocity
distribution in the high-temperature experiments

These results indicate that inferring a thermal plasma ion temperature from primary

neutron energy spectrum measurements is not possible for kinetic plasmas

14 1. B. Appelbe, et al., GO07.00008, this conference
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Measurements of the Gamow shift agree with the Maxwellian
fluid theory for low temperature implosions but show
discrepancies for high temperature implosions
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The iFP bimodal ion velocity distribution predictions are

consistent wit the high temperature DD measurements






