Deceleration Phase Rayleigh-Taylor Growth in Dynamic Shell Inertial Confinement Fusion Designs

Laboratory for Laser Energetics

Division of Plasma Physics 8-12 November 2021

The dynamic shell concept can significantly reduce deceleration phase Rayleigh-Taylor (RT) growth by lowering the central density

- Dynamic shell formation enables lower central densities for direct drive implosions
- Lower central density enhances deceleration RT stabilization effects (e.g. mass ablation)
- 2-D simulations show significant suppression of deceleration RT for all modes tested (ℓ = 2, 4, ..., 20, 24, 30, 40) when using a low central density

Collaborators

Valeri Goncharov, Will Trickey, Igor Igumenshchev, Jack Woo, Jonathon Caroll-Nellenback, Laboratory for Laser Energetics, NSF REU

This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0003856 and ARPA-E BETHE Grant No. DE-FOA-0002212.

Low central density enhances deceleration RT stabilization effects

- With low central density: shorter deceleration distance → less perturbation amplification
- Longer density scale length, $L_m \rightarrow$ reduces effective Atwood number
- Higher ablation velocity, $V_a \rightarrow$ greater mass ablation

$$V_a = C_{va} \frac{T_{hs}^{5/2}}{r_{hs}\rho_{sh}}$$

5/9

DEC2D was used to simulate deceleration phase of dynamic shell implosions

Density maps from DEC2D simulations show less RT growth for low central density targets

Density maps from DEC2D simulations show less RT growth for low central density targets (cont.)

Density maps from DEC2D simulations show less RT growth for low central density targets (cont.)

Deceleration RT growth in low central density target is smaller across all modes (ℓ = 2, 4, ... 20, 24, 30, 40)

The dynamic shell concept can significantly reduce deceleration phase Rayleigh-Taylor (RT) growth by lowering the central density

- Dynamic shell formation enables lower central densities for direct drive implosions
- Lower central density enhances deceleration RT stabilization effects (e.g. mass ablation)
- 2-D simulations show significant suppression of deceleration RT for all modes tested (ℓ = 2, 4, ..., 20, 24, 30, 40) when using a low central density

