
Software Architecture Design for Modular Multiphysics Simulations
Ayden Kish1, John Shaw1, Michael Lavell1, Andrew Sexton1, and Adam Sefkow1

1The TriForce Center for Multiphysics Modeling, a collaboration between the Departments of Mechanical Engineering, Physics, Computer Science, and the Laboratory for Laser Energetics

Summary

• Achieving the long-term objectives of the TriForce
computational environment will require careful attention to 
software architecture and design from its earliest stages

• The TriForce Fundamental Algorithm Testing Environment 
(TFFate) is being developed as a stand-alone application in 
Python to serve as a framework for software architecture 
prototyping and algorithm development

• Inspired by concepts in general code design and software 
architecture [1], the principle of an “architectural hierarchy” 
specific to scientific code development is proposed

• Extensive use of Abstract Base Classes (ABCs) allows for 
implementation within the architectural hierarchy without 
sacrificing user extensibility [2]

References

This material is based upon work supported by the United
States Department of Energy ARPA-E under Award No. DE-
AR0001272, OFES under Award No. DE-SC0017951, and
NNSA under Award No. DE-NA0003856.

Acknowledgments

Next Steps

Other Work by TCMM

Implementing PIC using the Architectural HierarchyPIC Archetype

Field 
Gathering

Velocity & 
Position
Update

Particle 
Deposition

Field 
Update

Core Particle-in-cell (PIC) Loop Field Gathering:
• Interpolating field values from the grid to the 

particles to calculate electromagnetic forces

Velocity & Position Update:
• Integrating the Newton-Lorentz equations of 

motion to update particle v(t) and x(t)

Particle Deposition:
• Interpolating particle charge/current density 

contributions to the grid

Field Update:
• Integrating Maxwell’s equations to update 

the electric and magnetic fields

Architectural Hierarchy

• Using such a hierarchy 
as a guiding principle, 
clarity of structure and 
modularity of function 
become natural

Objectives of TFFate

For TriForce:
• Provides a staging ground in Python for the addition of new 

functionalities and algorithms to the primary TriForce computing 
environment in C++

• Provides a prototype for the long-term architecture of the TriForce
computing environment

For the Developer:
• Individual parts of the code can be added to or modified with as 

few changes as possible
• Extensive testing suite, along with test-driven development 

streamlines bug squashing

For the User:
• Existing input decks can be read, understood, and modified easily
• For experienced users, simplicity of control does not mean loss of 

granularity

For the Learner:
• The flow of the code and the role of its parts can be understood 

using only high-level knowledge of the simulation archetype (PIC, 
FCV, SPH, etc.)

• Individual parts of the code can be read and understood without 
detailed knowledge of the rest of the code

• Dual configuration 
schemes allow for 
simplicity of control 
without loss of control

• User-defined 
Sequencers allow 
simulation archetype to 
be altered, paving the 
way for hybrid 
simulation capabilities

• Compartmentalization 
of non-physics 
functionality allows 
physics algorithms to 
support modularity

• User-facing configuration directly via 
Python code or indirectly via Input 
Deck

Driver

• Specification and ordering of 
the core time-stepping loop 

Operation 
Sequencing

• Particle Data
• Grid Data
• Global Parameters

Data Management

• Field Integration
• Particle EoM
• Interpolation

Physics Calculations

Driver

Operation 
Sequencing

Data Management

Physics Calculations

M
ore user facing

M
ore interface dependence

M
or

e c
om

pu
ta

tio
na

lly
 ex

pe
ns

ive

• Compartmentalization 
allows for changes to 
be localized and 
encourages modules 
to be individually 
intelligible

• Minimizing the impact 
of intra-code design 
choices on physics 
modules allows 
freedom of 
implementation and 
optimization

• TriForce’s Library for Integrated Numerical 
Kinetics (TFLink) is being used in collaboration 
with PPPL and Princeton Satellite Systems to 
simulate the PFRC-1 [3] device en route to 
simulations of PFRC-2/3 (lower figure adapted 
from [4])

[1] K. Reitz and T. Schlusser, The Hitchhiker’s Guide to Python (O’Reilly, 
Sebastopol, 2016), Chap. 4-6.

[2] Brightcove Inc., I. Pouzyrevsky, R. Smith, W. Modderman-Lenstra, D. 
Kaarsemaker (2021) Diamond source code (v4.0.515) [Open-source 
Code]. https://github.com/python-diamond/Diamond.

[3] D.R. Welch, S.A. Cohen, T.C.Genoni, and A.H. Glasser, Phys. Rev. 
Lett. 105 Article No. 015002 (2010). doi: 
https://doi.org/10.1103/PhysRevLett.105.015002.

[4] S.A. Cohen, B. Berlinger, C. Brunkhorst, A. Brooks, N. Ferraro, D.P. 
Lundberg, A. Roach, and A.H. Glasser, Phys. Rev. Lett. 98:14 Article No. 
145002 (2007). doi: https://doi.org/10.1103/PhysRevLett.98.145002.

[5] G. Lapenta, J. Comput. Phys. 334, 349 (2017). 
doi: http://dx.doi.org/10.1016/j.jcp.2017.01.002.

[6] G. Chen, L. Chacón, C. A. Leibs, D. A. Knoll, and W. Taitano, J. 
Comput. Phys. 258, 555 (2014). 
doi: http://dx.doi.org/10.1016/j.jcp.2013.10.052.

• Finalize v1.0 of the TFFate architecture and testing 
suite

• Convert existing implementations of explicit 
momentum- and energy-conserving particle pushers to 
TFFate

• Begin implementation of semi-implicit algorithms, such 
as that developed by Lapenta, et. al. [5]

• Implementation of fully implicit algorithms, such as 
those by Chen, et. al. [6]

• Investigation of long-time-scale energy conservation

• Investigation of methods allowing for under-resolving 
of the cyclotron frequency

• Novel particle initialization and weighting 
schemes for reducing particle noise are also 
being investigated

1. Simplicity of form without loss of function

2. Simplicity of change without loss of stability

3. Simplicity of control without loss of granularity

Monte-Carlo Method

Velocity-grid Method 


