Advancing the Accuracy of DFT Simulations for High-Energy-Density Plasmas by Developing Temperature-Dependent Exchange-Correlation Functionals

V. V. Karasiev
University of Rochester
Laboratory for Laser Energetics

63rd Annual Meeting of the American Physical Society Division of Plasma Physics
Pittsburgh, PA
8–12 November 2021
Summary

Exchange-correlation thermal effects are important in warm dense matter and dense plasma regimes and must be taken into account via a thermal XC functional for reliable DFT-based predictions

- The first nonempirical thermal XC LDA functional is based on the parameterization of the accurate quantum Monte-Carlo (QMC) simulation data for homogeneous electron gas (HEG) at finite temperature
- Systematic development of thermal XC functionals at the LDA, GGA, and meta-GGA level of theory clearly demonstrate systematic improvements of the accuracy of DFT simulations in warm dense matter (WDM) and dense plasma regimes
- The new T-dependent meta-GGA XC T-SCAN-L, is the most reliable functional across the entire temperature range; T-SCAN-L provides accurate predictions of (as demonstrated so far)
 - (i) insulator-to-metal transition boundary of dense H
 - (ii) equation of state (EOS) of deuterium
 - (iii) EOS of dense helium
 - (iv) dc conductivity of low-density Al

Abbreviations

- XC: exchange correlation
- DFT: density functional theory
- LDA: local density approximation
- GGA: generalized gradient approximation
- SCAN-L: de-orbitalized strongly constrained appropriately normed

V. V. Karasiev et al., Phys. Rev. Lett. 112, 076403 (2014);
V. V. Karasiev, J. W. Dufty, and S. B. Trickey, Phys. Rev. Lett. 120, 076401 (2018);
D. I. Mihaylov, V. V. Karasiev, and S. X. Hu, Phys. Rev. B 101, 245141 (2020);
Collaborators

D. I. Mihaylov and S. X. Hu
University of Rochester
Laboratory for Laser Energetics

S. B. Trickey and J. W. Dufty
University of Florida

Funding Acknowledgments

This work was supported by U.S. National Science Foundation PHY Grant No. 1802964

This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0003856.
Dense plasmas and WDM is a scientifically rich area of high-energy-density physics (HEDP) where several distinct physical regimes meet. The WDM challenge:
- well-developed models used on WDM face severe problems
- Quantum treatment is required

\[\Gamma \equiv \frac{\langle \text{potential energy} \rangle}{\langle \text{kinetic energy} \rangle} \sim 1 \]
\[\Theta_F \equiv \frac{kT}{E_F} \sim 1 \]

ICF: inertial confinement fusion

Motivation

Our goal is to develop more accurate XC free-energy density functionals for a better description of warm dense matter and dense plasma properties.

- Classical plasma approaches work only for weakly coupled nondegenerate systems ($\Gamma \ll 1$: low density, very high temperature).

All regions except left upper corner require quantum treatment of electronic degrees of freedom.

ICF: inertial confinement fusion

Thermal DFT coupled with *ab-initio* molecular dynamics (AIMD) has become a standard tool in HEDP

\[\Omega [n] = \mathcal{F}[n] + \int dr \left(v_{\text{xc}}(r) - \mu \right) n(r) \quad \text{Grand potential} \]

\[\mathcal{F}[n] = \mathcal{F}_s[n] + \mathcal{F}_H[n] + \mathcal{F}_{\text{xc}}[n] \quad \text{Free-energy functional} \]

\[\mathcal{F}_H[n] \quad \text{Hartree energy} \]

\[\mathcal{F}_{\text{xc}}[n] \quad \text{Exchange-Correlation (XC) free-energy} \]

\[\mathcal{F}_s[n] \quad \text{Non-interacting (Kohn-Sham) free-energy} \]

Molecular dynamics

\[m_j \ddot{R}_j = -\vec{\nabla}_j V(\mathbf{R}_1, \mathbf{R}_2, \ldots, \mathbf{R}_N) \]

Born–Oppenheimer energy surface:

\[V(\{\mathbf{R}\}) = \Omega(\{\mathbf{R}\}) + E_{\text{ion-ion}}(\{\mathbf{R}\}) \]

Current best practice uses free-energy DFT with one-electron Kohn–Sham orbitals

Mermin-Kohn–Sham scheme replaces \((3N_e)\)-dimensional problem by \(N_e\) coupled 3-D problems:

\[\begin{align*}
-\frac{1}{2} \nabla^2 + v_H(\mathbf{r}; \{\mathbf{R}\}) + v_{\text{xc}}(\mathbf{r}; \{\mathbf{R}\}) + v_{\text{ext}}(\mathbf{r}; \{\mathbf{R}\}) \varphi_j(\mathbf{r}; \{\mathbf{R}\}) = \varepsilon_j \varphi_j(\mathbf{r}; \{\mathbf{R}\}) \\
n(\mathbf{r}; \{\mathbf{R}\}) = \sum_j f(\varepsilon_j; \beta) |\varphi_j(\mathbf{r}; \{\mathbf{R}\})|^2 \\
v_{\text{xc}}[\beta, T] = \frac{\delta F_{\text{xc}}[n, T]}{\delta n} \\
\beta = \frac{1}{k_B T}
\end{align*} \]
DFT-based AIMD allows for calculations of many material properties required for simulations of ICF implosions and provides predictions for HEDP experiments.

Some of material properties accessible from DFT-based AIMD simulations:

- Equation of state
- Phase transitions
- Thermal conductivity
- Electrical conductivity
- Optic properties
- Absorption coefficients ➔ Rosseland and Planck mean opacities

Accuracy of all DFT-predicted properties depends on the reliability of the XC density functional.

The great majority of DFT simulations use a zero-T XC functional.
We are developing advanced temperature-dependent XC functionals to improve density functional theory (DFT) predictions in warm-dense regime

Jacob’s ladder of the zero-T XC functional approximations:

Finite-T XC functional approximations:

- Finite-T Hybrids: KDT0: DIM, VVK, SXH, PRB 101, 245141 (2020)
- Finite-T GGA (KDT16): Karasiev et al., PRL 120, 076401 (2018)

Development must start from the lowest rung because low-rung functionals are used as ingredients for higher rungs.

Finite-T LDA exchange-correlation is based on parameterization of accurate quantum Monte-Carlo data

- **KSDT**: Karasiev–Sjostrom–Dufty–Trickey finite-T LDA XC functional
 - parametrization based on restricted path-integral Monte Carlo data (RPIMC)
- **corrKSDT**
 - based on improved QMC data set at $T/T_F \geq 0.5$
- **GDB**: Growth-Dornheim-Bonitz
 - duplicates the original KSDT parametrization method
 - based on improved QMC data set at $T/T_F \geq 0.5$

Comparison shows that corrKSDT and GDB fits are virtually identical.

QMC simulation data for the homogeneous electron gas (HEG) show strong T-dependence of XC free energy for temperatures above a few tenths of Fermi temperature.

- XC free energy, f_{xc}, vanishes at very high T
- Noninteracting free energy, f_s, increases with increase of T and becomes the dominating contribution at high T
- We should expect that
 - XC thermal effects are important at intermediate temperatures (T between a few tenths and Fermi temperature)
 - the DFT results will not depend on XC functional used at very high T

Most quantum MD simulations use $T = 0$ XC functionals, which do not take into account XC thermal effects; Our calculations show the importance of these effects for HEG in the warm dense regime.

$$f_{xc}(r_s, T) - \text{XC LDA free-energy per particle, KSDT parameterization;}$$

$$\varepsilon_{xc}(r_s) - \text{XC zero-T LDA energy per particle, Perdew-Zunger (1981) parameterization;}$$

$$f_s(r_s, T) - \text{non-interacting free-energy per particle;}$$

$$A = \log \left(\frac{|f_{xc}(r_s, T) - \varepsilon_{xc}(r_s)|}{|f_s(r_s, T) + \varepsilon_{xc}(r_s)|} \right) - \text{measure of importance of the explicit } T \text{-dependence in XC free-energy.}$$

GGA rung: We developed a framework for T-dependent XC GGA functional to address the issue of combined thermal and non homogeneity effects

Generalized gradient approximation (GGA)

eXchange:

$$F_{x}^{\text{GGA}}[n,T] = \int n f_{x}^{\text{LDA}}(n,T) F_{x}(s_{2x}(T)) \, dr$$

$$F_{x}(s_{2x}) = 1 + \frac{\nu_{x} s_{2x}}{1 + \alpha |s_{2x}|}$$

$$s_{2x}(n,\nabla n, T) \equiv s^{2}(n,\nabla n) \hat{B}_{x}(t); \quad s = \frac{1}{2(3\pi^{2})^{2/3}} \frac{\nabla n}{n^{4/3}}$$

$$f_{x}^{\text{LDA}}(n,T) = \epsilon_{x}^{\text{LDA}}(n) \tilde{A}_{x}(t) \quad ; \quad t = T / T_{f}$$

Correlation:

$$F_{c}^{\text{GGA}}[n,T] = \int n f_{c}^{\text{GGA}}(n,\nabla n, T) \, dr$$

GGA correlation energy per particle:

$$f_{c}^{\text{GGA}}(n,\nabla n, T) = f_{c}^{\text{LDA}}(n,T) + H(f_{c}^{\text{LDA}}, q_{c}(T))$$

$$q_{c}(n,\nabla n, T) \equiv q(n,\nabla n) \sqrt{B_{c}(n,t)}$$

Imposed constraints on exchange and correlation:

- Reproduce finite-T small-s gradient expansion
- Satisfy Lieb–Oxford bound at $T = 0$
- Reduce to correct $T = 0$ limit
- Reduce to correct high-T limit

Next meta-GGA rung depends on n, ∇n and Δn

- Strongly constrained and appropriately normed (SCAN)† and de-orbitalized SCAN-L‡ ground-state XC provide the best overall performance at $T=0K$.

- Original ground-state SCAN XC depends on electron density (n), density gradient (∇n), and the chemical region detector α, which depends on Kohn–Sham orbitals via kinetic energy density (t_s):

$$
\varepsilon_{\text{SCAN}}(n, \nabla n, \alpha) \quad \alpha = \frac{t_s - t_W}{t_{\text{unif}}} \quad t_s = \frac{1}{2} \sum |\nabla \phi_i|^2 \quad t_W = \frac{\nabla n}{n} \quad t_{\text{unif}} = c_0 n^\frac{5}{3}
$$

- α recognizes covalent ($\alpha = 0$), metallic ($\alpha \approx 1$), and weak ($\alpha \gg 1$) bonds in local chemical environment.

- Deorbitilized SCAN-L: the orbital-dependent kinetic energy density, t_s, is replaced with an orbital-free Laplacian-dependent KE density, t_{s}^{OF}:

$$
t_s(\{\phi_i\}) \rightarrow t_{s}^{\text{OF}}(n, \nabla n, \Delta n) \quad \varepsilon_{\text{SCAN-L}}^{\text{SC-}}(n, \nabla n, \Delta n)
$$

$$
E_{\text{xc}}^{\text{SCAN-L}}[n] = \int d^3 r \ n(r) \varepsilon_{\text{xc}}^{\text{SCAN-L}}(n, \nabla n, \Delta n)
$$

A simple thermalization scheme using perturbative-like approach via universal thermal additive correction treated self-consistently has been developed

Taking into account the following considerations:

- The leading T-dependent LDA and GGA XC terms account for most of thermal effects
- Thermal corrections beyond the GGA level are expected to be small

We define the following additive thermal XC correction:

\[\Delta F^{\text{GGA}}_{\text{xc}}[n, T] = F^{\text{KDT16}}_{\text{xc}}[n, T] - E^{\text{PBE}}_{\text{xc}}[n]; \lim_{T \to 0} \Delta F^{\text{GGA}}_{\text{xc}}[n, T] \approx 0 \]

The new thermal SCAN-L (T-SCAN-L) is a meta-GGA XC with additive thermal correction:

\[F^{\text{metaGGA}}_{\text{xc}}[n, T] = E^{\text{metaGGA}}_{\text{xc}}[n] + \Delta F^{\text{GGA}}_{\text{xc}}[n, T]; \lim_{T \to 0} F^{\text{metaGGA}}_{\text{xc}}[n, T] \approx E^{\text{metaGGA}}_{\text{xc}}[n] \]

Properties:

- T-SCAN-L by construction reduces to the ground-state meta-GGA SCAN-L in the zero-T limit, preserving its accuracy
- T-SCAN-L reduced to the thermal KDT16 in the high-T limit
- T-SCAN-L smoothly interpolates between these two limits taking into account combined XC thermal and non-homogeneity effects
T-SCAN-L preserves the accuracy of SCAN-L at low-\(T \), including combined XC thermal and inhomogeneity effects: model system sc-H, \(\rho = 0.6 \text{ g/cm}^3 \)
Relative error of pressure is reduced by a factor of 3 to 10 when T-SCAN-L is applied to EOS of warm-dense He

- Path-integral Monte Carlo (PIMC) data at high-T are used as a reference
- T-SCAN-L (meta-GGA + thermal) provides excellent agreement with regard to the PIMC reference

The relative error of total pressure from DFT simulations with respect to the reference PIMC results

Application to warm dense He: Quantifying non-homogeneity and thermal XC effects

- The magnitude of these effects (missed by standard PBE XC) on total pressure ≈ 5% to 10% for T between 0.1 and 10 eV
- **T-SCAN-L** smoothly interpolates between low-T and high-T limits (SCANL and KDT16 respectively)
- The EOS table combined from the PBE/DFT + PIMC data is thermodynamically inconsistent, as opposite to the T-SCAN-L/DFT + PIMC combined EOS table

![Graphs showing relative difference between total pressure from DFT simulations with SCAN-L, KDT16, T-SCAN-L, and PBE XC for different densities and temperatures.](image)

\iff The relative difference between total pressure from DFT simulations with SCAN-L, KDT16, T-SCAN-L, and PBE XC
With SCAN-L/T-SCAN-L we have closed the decade-long discrepancy between experiments and DFT calculations in metallization of hydrogen/deuterium *

DFT-predicted insulator-to-metal transition boundary is now in good agreement with experimental measurements across a wide range of pressure and temperatures

Application of T-SCAN-L to dc conductivity of warm-dense Al shows better agreement w/r to experimental measurements

- The new T-SCAN-L functional improves the accuracy of transport property predictions as compared to standard ground-state functionals

\[\sigma_{dc} (\Omega \text{cm})^{-1} \]

\[\rho_{A1} (\text{g/cm}^3) \]

\[\text{Al dc conductivity as a function of density along } T = 10,000 \text{ K isotherm} \]

Exchange-correlation thermal effects are important in warm dense matter and dense plasma regimes and must be taken into account via a thermal XC functional for reliable DFT-based predictions

- The first nonempirical thermal XC LDA functional is based on the parameterization of the accurate quantum Monte-Carlo (QMC) simulation data for homogeneous electron gas (HEG) at finite temperature

- Systematic development of thermal XC functionals at the LDA, GGA, and meta-GGA level of theory clearly demonstrate systematic improvements of the accuracy of DFT simulations in warm dense matter (WDM) and dense plasma regimes

- The new T-dependent meta-GGA XC T-SCAN-L, is the most reliable functional across the entire temperature range; T-SCAN-L provides accurate predictions of (as demonstrated so far)
 - (i) insulator-to-metal transition boundary of dense H
 - (ii) equation of state (EOS) of deuterium
 - (iii) EOS of dense helium
 - (iv) dc conductivity of low-density Al

XC: exchange correlation
DFT: density functional theory
LDA: local density approximation
GGA: generalized gradient approximation
SCAN-L: de-orbitalized strongly constrained appropriately normed

V. V. Karasiev et al., Phys. Rev. Lett. 112, 076403 (2014);
V. V. Karasiev, J. W. Dufty, and S. B. Trickey, Phys. Rev. Lett. 120, 076401 (2018);