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Summary

Exchange-correlation thermal effects are important in warm dense matter and dense plasma regimes 
and must be taken into account via a thermal XC functional for reliable DFT-based predictions 

• The first nonempirical thermal XC LDA functional is based on the parameterization of the 
accurate quantum Monte-Carlo (QMC) simulation data for homogeneous electron gas (HEG) at 
finite temperature

• Systematic development of thermal XC functionals at the LDA, GGA, and meta-GGA level 
of theory clearly demonstrate systematic improvements of the accuracy of DFT simulations 
in warm dense matter (WDM) and dense plasma regimes

• The new T-dependent meta-GGA XC T-SCAN-L, is the most reliable functional across the entire 
temperature range; T-SCAN-L provides accurate predictions of (as demonstrated so far)
－ (i) insulator-to-metal transition boundary of dense H
－ (ii) equation of state (EOS) of deuterium
－ (iii) EOS of dense helium 
－ (iv) dc conductivity of low-density Al

____________
XC: exchange correlation 
DFT: density functional theory
LDA: local density approximation
GGA: generalized gradient approximation
SCAN-L: de-orbitalized strongly constrained appropriately normed

____________
V. V. Karasiev et al., Phys. Rev. Lett. 112, 076403 (2014);
V. V. Karasiev, J. W. Dufty, and S. B. Trickey, Phys. Rev. Lett. 120, 076401 (2018);
D. I. Mihaylov, V. V. Karasiev, and S. X. Hu, Phys. Rev. B 101, 245141 (2020).
V. V. Karasiev, D. I. Mihaylov, and S. X. Hu, “Meta-GGA Exchange-Correlation Free Energy 

Density Functional to Achieve Unprecedented Accuracy for Warm-Dense-Matter 
Simulations,” submitted to Physical Review Letters.); 78, 1396(E) (1997).
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Motivation

Dense plasmas and WDM is a scientifically rich area of high-energy-density 
physics (HEDP) where several distinct physical regimes meet
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The WDM challenge: 
• well-developed models used on 

WDM face severe problems
• Quantum treatment is required 

____________
ICF: inertial confinement fusion

____________
S. B. Trickey, private communication (2021); R. More, private communication (2021).
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Motivation

Our goal is to develop more accurate XC free-energy density functionals 
for a better description of warm dense matter and dense plasma properties

Schematic temp.-density diagram (T. Dornheim et al., Phys. Rep 744, 1 (2018))

• Classical plasma approaches work only 
for weakly coupled nondegenerate 
systems (Γ << 1: low density, very high 
temperature)

All regions except left upper corner 
require quantum treatment of 
electronic degrees of freedom.

____________
ICF: inertial confinement fusion
T. Dornheim, S. Groth, and M. Bonitz, Phys. Rep. 744, 1 (2018).
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Thermal DFT coupled with ab-initio molecular dynamics (AIMD) 
has become a standard tool in HEDP

ext

s xc

xc

s

[ ] [ ] ( ( ) ) ( ) -- Grand potential 

[ ] [ ] [ ] [ ] -- Free-energy functional
[ ] -- Hartree energy
[ ] -- Exchange-Correlation (XC) free-energy

[ ] -- Non-interacting (Kohn-Sh

H

H

n n d v n

n n n n
n
n

n

µΩ = + −

= + +
∫ r r r

   


 am) free-energy

Explicit T-dependence makes the difference

Molecular dynamics   

Born–Oppenheimer 
energy surface:

1 2( , , , )I I I Nm V= −∇R R R R






{ }( ) { }( ) { }( )-ion ionV E= Ω +R R R

Current best practice uses free-energy DFT with one-electron 
Kohn–Sham orbitals

Mermin-Kohn–Sham scheme replaces (3Ne)-dimensional 
problem by Ne coupled 3-D problems: 
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DFT-based AIMD allows for calculations of many material properties required for 
simulations of ICF implosions and provides predictions for HEDP experiments

Some of material properties accessible from DFT-based AIMD simulations

• Equation of state

• Phase transitions

• Thermal conductivity

• Electrical conductivity

• Optic properties

• Absorption coefficients ➛ Rosseland and Planck mean opacities

Accuracy of all DFT-predicted properties depends on the reliability of the XC density functional. 

The great majority of DFT simulations use a zero-T XC functional.



We are developing advanced temperature-dependent XC functionals to improve 
density functional theory (DFT) predictions in warm-dense regime

Jacob’s ladder* of the zero-T XC functional 
approximations:

Finite-T XC functional approximations:

 Finite-T Hybrids: KDT0: DIM, VVK, SXH, PRB 101, 245141 (2020) 

 Finite-T meta-GGA: T-SCAN-L and T-r2SCAN-L Phys. Rev. Lett. 2021 (submitted)

 Finite-T GGA (KDT16): Karasiev et al., PRL 120, 076401 (2018)

 Finite-T LDA (KSDT): Karasiev et al., PRL 112, 076403 (2014)

Development must start from the lowest rung because low-
rung functionals are used as ingredients for higher rungs.

PBE/GGA: Perdew, Burke, Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)
PZ/LDA: Perdew and Zunger, Phys. Rev. B 23, 5048 (1982)
*Perdew and Schmidt, AIP Conf. Proc. 577, 1 (2001)

8
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Finite-T LDA exchange-correlation is based on parameterization of accurate 
quantum Monte-Carlo data

• KSDT: Karasiev–Sjostrom–Dufty–Trickey finite-T LDA XC functional*
－ parametrization based on restricted path-integral Monte Carlo data (RPIMC)

• corrKSDT**
－ based on improved QMC data set at T/TF ≥ 0.5

• GDB: Growth-Dornheim-Bonitz†

－ duplicates the original KSDT parametrization method
－ based on improved QMC data set at T/TF ≥ 0.5

Comparison shows that corrKSDT and GDB fits are virtually identical.

____________
* V. V. Karasiev et al., Phys. Rev. Lett. 112, 076403 (2014).

** V. V. Karasiev, J. W. Dufty, and S. B. Trickey, Phys. Rev. Lett. 120, 076401 (2018).
† S. Groth et al., Phys. Rev. Lett. 119, 135001 (2017).
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QMC simulation data for the homogeneous electron gas (HEG) show strong T-dependence 
of XC free energy for temperatures above a few tenths of Fermi temperature

• XC free energy, fxc, vanishes at very high T

• Noninteracting free energy, fs, increases with increase of T and becomes the dominating contribution at high T

• We should expect that
－ XC thermal effects are important at intermediate temperatures (T between a few tenths and Fermi temperature)
－ the DFT results will not depend on XC functional used at very high T

____________
V. V. Karasiev et al., Phys. Rev. Lett. 112, 076403 (2014).
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Most quantum MD simulations use T = 0 XC functionals, which do not take 
into account XC thermal effects; Our calculations show the importance 
of these effects for HEG in the warm dense regime

WDM
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V. V. Karasiev, L. Calderín, and S. B. Trickey, Phys. Rev. E 93, 063207 (2016).
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GGA rung: We developed a framework for T-dependent XC GGA functional 
to address the issue of combined thermal and non homogeneity effects

Generalized gradient approximation (GGA)
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Imposed constraints on exchange and correlation:
• Reproduce finite-T small-s gradient expansion
• Satisfy Lieb–Oxford bound at T = 0
• Reduce to correct T = 0 limit
• Reduce to correct high-T limit

XC thermal effects

XC nonhomogeneity
effects

____________
V. V. Karasiev, J. W. Dufty, and S. B. Trickey, Phys. Rev. Lett. 120, 076401 (2018).
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Next meta-GGA rung depends on n, ∇ n and ∆ n

• Strongly constrained and appropriately normed (SCAN)† and de-orbitalized SCAN-L‡ ground-state 
XC provide the best overall performance at T=0K

• Original ground-state SCAN XC depends on electron density (n), density gradient (𝛁𝛁n), and the 
chemical region detector 𝜶𝜶, which depends on Kohn–Sham orbitals via kinetic energy density (𝒕𝒕s):

𝜺𝜺𝐱𝐱𝐱𝐱𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝒏𝒏,𝛁𝛁𝒏𝒏,𝜶𝜶 ; 𝜶𝜶 = 𝒕𝒕𝐬𝐬−𝒕𝒕𝐖𝐖

𝒕𝒕𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮
; 𝒕𝒕𝐬𝐬 = 𝟏𝟏

𝟐𝟐
𝚺𝚺 𝛁𝛁𝝓𝝓𝒊𝒊

𝟐𝟐 ; 𝒕𝒕𝐖𝐖= 𝟏𝟏
𝟖𝟖
𝛁𝛁𝒏𝒏
𝒏𝒏

;  𝒕𝒕𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮 = 𝐱𝐱𝟎𝟎𝒏𝒏
𝟓𝟓
𝟑𝟑

• 𝜶𝜶 recognizes covalent (𝜶𝜶 = 0), metallic (𝜶𝜶 ≈ 1), and weak (𝜶𝜶 ≫ 1) bonds in local chemical environment

• Deorbitilized SCAN-L: the orbital-dependent kinetic energy density, 𝒕𝒕s, is replaced with an orbital-free 
Laplacian-dependent KE density, 𝒕𝒕𝐬𝐬𝐎𝐎𝐎𝐎:

𝒕𝒕𝐬𝐬 𝝓𝝓𝒊𝒊 → 𝒕𝒕𝐬𝐬𝐎𝐎𝐎𝐎 𝒏𝒏,𝛁𝛁𝒏𝒏,𝚫𝚫𝒏𝒏 ; 𝜺𝜺𝐱𝐱𝐱𝐱𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒−𝐋𝐋 𝒏𝒏,𝛁𝛁𝒏𝒏,𝚫𝚫𝒏𝒏

𝑬𝑬𝐱𝐱𝐱𝐱𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒−𝐋𝐋 𝒏𝒏 = ∫ 𝒅𝒅𝟑𝟑𝒓𝒓 𝒏𝒏 𝒓𝒓 𝜺𝜺𝐱𝐱𝐱𝐱𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒−𝐋𝐋 𝒏𝒏,𝛁𝛁𝒏𝒏,𝚫𝚫𝒏𝒏

____________
* J. Sun, A. Ruzsinszky, and J. P. Perdew, Phys. Rev. Lett. 115, 036402 (2015).

** D. Mejia-Rodriguez and S. B. Trickey, Phys. Rev. A 96, 052512 (2017).
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A simple thermalization scheme using perturbative-like approach via universal 
thermal additive correction treated self-consistently has been developed

Taking into account  the following considerations:

• The leading T-dependent LDA and GGA XC terms account for most of thermal effects

• Thermal corrections beyond the GGA level are expected to be small

We define the following additive thermal XC correction:

The new thermal SCAN-L (T-SCAN-L) is a meta-GGA XC with additive thermal correction:

∆𝑭𝑭𝐱𝐱𝐱𝐱𝐆𝐆𝐆𝐆𝐒𝐒 𝒏𝒏,𝑻𝑻 = 𝑭𝑭𝐱𝐱𝐱𝐱𝐊𝐊𝐊𝐊𝐊𝐊𝟏𝟏𝐊𝐊 𝒏𝒏,𝑻𝑻 –𝑬𝑬𝐱𝐱𝐱𝐱𝐏𝐏𝐏𝐏𝐏𝐏 𝒏𝒏 ;   lim
𝑻𝑻→𝟎𝟎

∆𝑭𝑭𝐱𝐱𝐱𝐱𝐆𝐆𝐆𝐆𝐒𝐒 𝒏𝒏,𝑻𝑻 ≈ 0 

𝑭𝑭𝐱𝐱𝐱𝐱𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐆𝐆𝐆𝐆𝐒𝐒 𝒏𝒏,𝑻𝑻 = 𝑬𝑬𝐱𝐱𝐱𝐱𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐆𝐆𝐆𝐆𝐒𝐒 𝒏𝒏 + ∆𝑭𝑭𝐱𝐱𝐱𝐱𝐆𝐆𝐆𝐆𝐒𝐒 𝒏𝒏,𝑻𝑻 ;   lim
𝑻𝑻→𝟎𝟎

𝑭𝑭𝐱𝐱𝐱𝐱𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐆𝐆𝐆𝐆𝐒𝐒 𝒏𝒏,𝑻𝑻 ≈ 𝑬𝑬𝐱𝐱𝐱𝐱𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐆𝐆𝐆𝐆𝐒𝐒 𝒏𝒏

Properties:

• T-SCAN-L by construction reduces to the ground-state meta-GGA SCAN-L in the zero-T limit, preserving its accuracy

• T-SCAN-L reduced to the thermal KDT16 in the high-T limit

• T-SCAN-L smoothly interpolates between these two limits taking into account combined XC thermal and non-homogeneity effects
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T-SCAN-L preserves the accuracy of SCAN-L at low-T, including combined XC 
thermal and inhomogeneity effects: model system sc-H, 𝝆𝝆 = 0.6 g/cm3



16

Relative error of pressure is reduced by a factor of 3 to 10 when T-SCAN-L is 
applied to EOS of warm-dense He

• Path-integral Monte Carlo (PIMC) data at high-T are used as a reference

• T-SCAN-L (meta-GGA + thermal) provides excellent agreement with regard to the PIMC reference

 The relative error of total pressure 
from DFT simulations with respect 
to the reference PIMC results 

____________
B. Militzer, Phys. Rev. B 79, 155105 (2009).
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Application to warm dense He: Quantifying non homogeneity 
and thermal XC effects 

• The magnitude of these effects (missed by standard PBE XC) on total pressure ≈ 5% to 10% 
for T between 0.1 and 10 eV

• T-SCAN-L smoothly interpolates between low-T and high-T limits (SCANL and KDT16 respectively)

• The EOS table combined from the PBE/DFT + PIMC data is thermodynamically inconsistent, 
as opposite to the T-SCAN-L/DFT + PIMC combined EOS table

 The relative difference between total 
pressure from DFT simulations with 
SCAN-L, KDT16, T-SCAN-L, and PBE XC
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With SCAN-L/T-SCAN-L we have closed the decade-long discrepancy between 
experiments and DFT calculations in metallization of hydrogen/deuterium *

DFT-predicted insulator-to-
metal transition boundary is 
now in good agreement with 
experimental measurements 
across a wide range of 
pressure and temperatures

* J. Hinz, V. V. Karasiev, S. X. Hu, M. Zaghoo, D. Mejia-Rodriguez, S. B. Trickey, L. Calderin, Phys. Rev. Res. 2, 032065(R ) (2020);
D. I. Mihaylov, V. V. Karasiev, S. X. Hu, J. R. Rygg, V. N. Goncharov, G. W. Collins, Phys. Rev. B 104, 144104 (2021).

18



19

Application of T-SCAN-L to dc conductivity of warm-dense Al shows better 
agreement w/r to experimental measurements

• The new T-SCAN-L functional improves the accuracy of transport property 
predictions as compared to standard ground-state functionals

 Al dc conductivity as a function of 
density along T = 10,000 K isotherm

____________
* A. W. DeSilva and J. D. Katsouros, Phys. Rev. E 57, 5945 (1998).
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Summary

Exchange-correlation thermal effects are important in warm dense matter and dense plasma regimes 
and must be taken into account via a thermal XC functional for reliable DFT-based predictions 

• The first nonempirical thermal XC LDA functional is based on the parameterization of the 
accurate quantum Monte-Carlo (QMC) simulation data for homogeneous electron gas (HEG) at 
finite temperature

• Systematic development of thermal XC functionals at the LDA, GGA, and meta-GGA level 
of theory clearly demonstrate systematic improvements of the accuracy of DFT simulations 
in warm dense matter (WDM) and dense plasma regimes

• The new T-dependent meta-GGA XC T-SCAN-L, is the most reliable functional across the entire 
temperature range; T-SCAN-L provides accurate predictions of (as demonstrated so far)
－ (i) insulator-to-metal transition boundary of dense H
－ (ii) equation of state (EOS) of deuterium
－ (iii) EOS of dense helium 
－ (iv) dc conductivity of low-density Al

____________
XC: exchange correlation 
DFT: density functional theory
LDA: local density approximation
GGA: generalized gradient approximation
SCAN-L: de-orbitalized strongly constrained appropriately normed

____________
V. V. Karasiev et al., Phys. Rev. Lett. 112, 076403 (2014);
V. V. Karasiev, J. W. Dufty, and S. B. Trickey, Phys. Rev. Lett. 120, 076401 (2018);
D. I. Mihaylov, V. V. Karasiev, and S. X. Hu, Phys. Rev. B 101, 245141 (2020).
V. V. Karasiev, D. I. Mihaylov, and S. X. Hu, “Meta-GGA Exchange-Correlation Free Energy 

Density Functional to Achieve Unprecedented Accuracy for Warm-Dense-Matter 
Simulations,” submitted to Physical Review Letters.); 78, 1396(E) (1997).
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