Design of the Third X-Ray Line of Sight for OMEGA

S. T. Ivancic University of Rochester Laboratory for Laser Energetics 63rd Annual Meeting of the American Physical Society Division of Plasma Physics Pittsburgh, PA 8–12 November 2021

Summary

A 3-D view of the hot spot is crucial for understanding the evolution of the hot spot and the multidimensional effects that occur during ICF implosions

- A multi-year R&D effort is being conducted for 3-D (i.e., having three or more diagnostic lines of sight) x-ray and nuclear diagnostics to study multidimensional effects on laser-direct-drive implosions during all phases of the implosion
- Requirements for a third x-ray imager have been established, informed by three-dimensional radiationhydrodynamics simulations
- The conceptual design for a third line of sight consists of a 22.5× composite pinhole imager coupled to a >1.5-m drift tube to provide 100× temporal dilation of the hot spot at peak compression; the sequential images are recorded with a high-speed hCMOS detector with a programmable gate width

Collaborators

W. Theobald, K. Churnetski, M. Michalko, R. Spielman, and S. P. Regan University of Rochester Laboratory for Laser Energetics

> A. Raymond and J. D. Kilkenny General Atomics

A. Carpenter, C. Trosseille, and D. K. Bradley Lawrence Livermore National Laboratory

J. D. Hares and A. K. L. Dymoke-Bradshaw Kentech Instruments Ltd.

> G. Rochau and M. Sanchez Sandia National Laboratories

> > D. Garand Sydor Technologies

Multidimensional effects on hot-spot formation will be diagnosed with 3-D-gated x-ray imaging of the hot-spot plasma

Three-dimensional gated x-ray imaging of the hot spot will use three quasi-orthogonal lines of sight.

LOS: line of sight * I. V. Igumenshchev *et al.*, Phys. Plasmas <u>23</u>, 052702 (2016). SLOS-TRXI: single line-of-sight time-resolved x-ray imager

The 3-D hot-spot x-ray imaging requirements are being developed based on 3-D radiation-hydrodynamic simulations

Preliminary requirements to resolve modes ℓ = 1 to 3 with 3-D view:

- Spatial resolution of 5 to 10 μ m (hot-spot diameter ~50 μ m)
- Temporal resolution of 20 to 30 ps (burnwidth ~80 ps)
- ≥3 diagnostic lines of sight with absolute reference frames

Machine-learning techniques** will be applied in the 3-D data analysis.

- * K. M. Woo et al., Phys. Plasmas <u>25</u>, 052704 (2018); Spect3D, Prism Computational Sciences Inc., Madison, WI 53711; Vislt, Lawrence Livermore National Laboratory, Livermore, CA 94550; J. Delettrez et al., Phys. Rev. A <u>36</u>, 3926 (1987).
- ** B. Zirps et al., "A Platform to Infer the Dominant Mode from Experimental X-Ray Images Using the Deep-Learning Convolution Neural Network," to be submitted.

The basis for technical requirements for the third line of sight flow from the need for 3-D reconstruction

Requirement item	Requirement value	Requirement basis/rationale/justification
X-ray energy range	2 keV to 10 keV	Record the hot-spot x-ray emission; actual range might be narrower with additional filtration, e.g., 4 keV to 9 keV
Signal-to-noise ratio	≥20:1	Required to discriminate the signal of interest above noise; limited by drift tube current
Field of view	≥120 × 120 µm² at TCC	The field of view is required to be at least ~2× the diameter of a typical hot spot
Spatial resolution	Best achievable	A spatial resolution of 5 μ m or better is required to resolve mode ℓ = 10 in the shape of the hot spot with a typical diameter of 50 μ m
Temporal resolution	<20 ps	The burn duration of a high-performing cryo implosion is ~80 ps; four or more independent images at different times of evolution
Record length	≥160 ps	Twice the burn duration (~80 ps) to allow for timing jitter error and full record of hot-spot evolution
Neutron background resilience	>2 × 10 ⁸ n cm ^{−2}	High neutron yield of up to 2×10^{14} might pose background issues
Electronic readout	N/A	Provides data right after shot to inform PI for shot decisions— 3-D hot-spot reconstruction

TCC: target chamber center PI: principal investigator

The design is based on a robust x-ray imaging platform and will have improved spatial (\leq 5- μ m) and temporal (20-ps) resolutions

UR 🔌

Preliminary mechanical layout of the imager is underway

A photometric estimate for the third LOS gated x-ray imager indicates a similar signal level per pixel as with the current drift tube imager

A demagnifying drift tube increases the signal level at the detector plane and allows shorter time gating of sub-10- μ m features.

The point-spread function of the third LOS x-ray imager was calculated with the Fresnel approximation using the anticipated spectral sensitivity

A voltage pulse ramped at –12 V/ps provides a recording window of 160 ps with a nonlinear mapping between the input and output time

A 20-ps event is dilated to 2 ns at the start of the ramp and nearly 7 ns at the end of the ramp.

A 3-D view of the hot spot is crucial for understanding the evolution of the hot spot and the multidimensional effects that occur during ICF implosions

- A multi-year R&D effort is being conducted for 3-D (i.e., having three or more diagnostic lines of sight) x-ray and nuclear diagnostics to study multidimensional effects on laser-direct-drive implosions during all phases of the implosion
- Requirements for a third x-ray imager have been established, informed by three-dimensional radiationhydrodynamics simulations
- The conceptual design for a third line of sight consists of a 22.5× composite pinhole imager coupled to a >1.5-m drift tube to provide 100× temporal dilation of the hot spot at peak compression; the sequential images are recorded with a high-speed hCMOS detector with a programmable gate width

