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Dynamic shell stability to low-mode perturbations 

Density maps of implosion shells from 3-D ASTER hydrodynamic simulations 
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Summary 

Three-dimensional hydrodynamic simulations suggest that dynamic shell (DS) 

implosions can tolerate perturbations from laser beam overlapping 

• Effects of perturbations from beam overlapping in directly driven DS designs were studied using 3-D ASTER† 

hydrodynamic simulations 

• Optimum distributions of beams around targets were found using the triangulated icosahedron geometry modified 
by the charged-particle method 

• Designs with low IFAR‡ (<30) are required for avoiding unstable “broken-shell” implosions 

𝜋Τ• Beam overlap modes (ℓ~ 𝑁𝑏) affect DS implosions mainly during the acceleration and hot-spot formation stages2 

†Igumenshchev et al., Phys. Plasmas 24, 056307 (2017). 
‡ IFAR: in-flight aspect ratio. 
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A novel dynamic shell concepta,b in ICF was proposed for enhanced control of 1-D 

implosion dynamics and easier target fabrication 

Design with the gain of ~100 using 1.3-MJ laser energy Shock diagram from 1-D simulations 
and dynamic beam zooming (IFAR ≈ 27) 

Wetted 
foam 

DT liquid 3280 μm 

12-picket laser pulse 

a Goncharov et al., Phys.Rev. Lett. 125, 065001 (2020). 
b V. Goncharov, talk NO04.00012 in this session. 

(log-density map in time-distance coordinates) 
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A novel dynamic shell concepta,b in ICF was proposed for enhanced control of 1-D 

implosion dynamics and easier target fabrication 

Design with the gain of ~100 using 1.3-MJ laser energy Shock diagram from 1-D simulations 
and dynamic beam zooming (IFAR ≈ 27) (log-density map in time-distance coordinates) 

Wetted 
foam 

3280 μmDT liquid 

First three pickets 
compress the target 
and define the inside 
shell density 

12-picket laser pulse 

a Goncharov et al., Phys.Rev. Lett. 125, 065001 (2020). 
b V. Goncharov, talk NO04.00012 in this session. 
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A novel dynamic shell concepta,b in ICF was proposed for enhanced control of 1-D 

implosion dynamics and easier target fabrication 

Design with the gain of ~100 using 1.3-MJ laser energy Shock diagram from 1-D simulations 
and dynamic beam zooming (IFAR ≈ 27) (log-density map in time-distance coordinates) 

Wetted 
foam 

3280 μmDT liquid 

First three pickets 
compress the target 
and define the inside 
shell density 

12-picket laser pulse 

Blast wave from 
bounced shocks 

a Goncharov et al., Phys.Rev. Lett. 125, 065001 (2020). 
b V. Goncharov, talk NO04.00012 in this session. 
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(log-density map in time-distance coordinates) 

A novel dynamic shell concepta,b in ICF was proposed for enhanced control of 1-D 

implosion dynamics and easier target fabrication 

Design with the gain of ~100 using 1.3-MJ laser energy Shock diagram from 1-D simulations 
and dynamic beam zooming (IFAR ≈ 27) 

Wetted 
foam 

DT liquid 3280 μm 

12-picket laser pulse 

First three pickets 
compress the target 
and define the inside 
shell density 

Blast wave from 
bounced shocks 

Rest pickets 
form the shell 

a Goncharov et al., Phys.Rev. Lett. 125, 065001 (2020). 
b V. Goncharov, talk NO04.00012 in this session. 
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A novel dynamic shell concepta,b in ICF was proposed for enhanced control of 1-D 

implosion dynamics and easier target fabrication 

Design with the gain of ~100 using 1.3-MJ laser energy 
and dynamic beam zooming (IFAR ≈ 27) 

Wetted 
foam 

DT liquid 3280 μm 

12-picket laser pulse 

First three pickets 
compress the target 
and define the inside 
shell density 

Blast wave from 
bounced shocks 

Shock diagram from 1-D simulations 

Rest pickets 
form the shell 

Ramp pulse 
drives 
conventional 
implosion 

a Goncharov et al., Phys.Rev. Lett. 125, 065001 (2020). 
b V. Goncharov, talk NO04.00012 in this session. 

(log-density map in time-distance coordinates) 
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200 

Stability analysis of dynamic shell designs should consider each evolution stage 

Shock diagram from 1-D simulations 

• Long evolution (~200 ns) can enhance the secular and 
hydrodynamic instability growths 

• Large variation of the target outer radius can increase perturbations 
from laser beam overlap 

- increased number of beams and dynamic beam zooming 
might be necessary 

• Optimization of beam geometry and zooming can reduce specs 
for the number of beams 

• Low IFAR improves implosion stability but reduces 1-D performance 

• Laser imprint seeding small-scale perturbations is expected 
to be less important (will be tested in future work) 
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Verticos projected 
onto sphere 

The geometry of beams around targets crucially impacts the stability of implosion 

shells 

12 vertices 362 vertices 

• Beam configurations are chosen based on the geometry 
of triangulated icosahedrons a 

• For beams in vertices, relatively large mode 6 perturbations 
exist even for large numbers of beams 

• Mode 6 is suppressed applying the charged-particle (CP) methodb 

𝑁𝑏 • 3-D simulations suggest that nonsymmetric beam
d2𝑟𝑖Ƹ 𝑟𝑖Ƹ − 𝑟𝑗Ƹ d𝑟𝑖Ƹ configurations (random seed + CP) result in more = ෍ −1+𝛼 d𝑡2 d𝑡 distorted implosions 𝑟𝑖Ƹ − 𝑟𝑗Ƹ𝑗=1(𝑗≠𝑖) 

𝑟𝑖Ƹ − unit vector toward 𝑖−particle 
a W. Trickey, talk NO04.00014 in this session. 𝛼 = 2 for the Coulomb interactions 
b Murakami et al., Phys. Plasmas 17, 082702 (2010). 
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The largest suppression of icosahedral mode-6 perturbations in the absorbed light 

was found using the charged-particle method with 𝛼 = 0 

𝑁𝑏 = 162 Distribution of absorbed light in the beginning of the laser pulse 
𝜋ൗℓ~ 𝑁𝑏 = 202 Perturbation spectrum 

𝑅𝑏Τ𝑅𝑡 = 1, SG = 4.5 

Factor of 2 𝛼 = 2 (Coulomb) 
reduction 

= 1.2 × 10−3𝜎𝑟𝑚𝑠 of mode 6 
𝑃 − 𝑉 = 6.2 × 10−3 

𝛼 = 0 
= 9.2 × 10−4𝜎𝑟𝑚𝑠 

𝑃 − 𝑉 = 5.0 × 10−3 

Methods other than CP are explored 



  

 

 

  

 
 

    
  

   

l.5x 10-• 

0 50 
I-mode 

• RocAEsTER 

100 

~ 4x10-• 

[ 
';' 3x10-11 
'O 
.3 'a 2x 10-• 

] 
10-• 

0 

50 
I-mode 

100 

4x1Q-4 

S 3x10-• 

2, 

0 

50 
t-mode 

6x1Q-4 

! 
~ 4x10-• 

2 
0. 
] 2x10-• 

0 

50 
I-mode 

100 

UR-LLE 

Three-dimensional simulations suggest that beam modes are mostly imprinted and 

grow during the shell acceleration/implosion stages 

• Initially imprinted short-wavelength beam modes decay during the initial target compression and shell formation stagesa 

• The ablative RT instability results in predominant growth of longer-wavelength modes and suppression of 
short-wavelength modes during the shell acceleration stage 

Evolution of areal density perturbation spectrum during shell acceleration 

𝑁𝑏 = 812 
𝜋ൗℓ~ 𝑁𝑏 = 45 End of acceleration and2 

Beginning of acceleration beginning of deceleration 

t = 202.0 nst = 199.0 ns t = 204.0 ns t = 205.0 ns 
Suppressed 
beam 
modes 

a Igumenshchev et al., Phys. Rev. Lett. 123, 065001 (2019). 
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Density maps in the meridional cross-section from 3-D ASTER simulations 

Suppression of beam modes in the case of 𝑵𝒃 = 𝟖𝟏𝟐 results in a relatively stable 

implosion 

3) Beginning of deceleration 3) Peak neutron production 𝜌 (gΤcm3) Symmetric implosion 𝜌 (gΤcm 𝜌 (gΤcm 

t=205.0ns t=205.4ns t=205.4ns 

• RT bubbles do not puncture the shell • Artificial mode-2 affects the implosion 
performance (numerical challenge) • 3-D neutron yield/1-D neutron yield = 0.32 (without burn) 

• Effects of icosahedral mode 6 are small 



Density maps in the meridional cross-section from 3-D ASTER simulations 

Beam modes in the case of 𝑵𝒃 = 𝟏𝟔𝟐 are not suppressed enough and result in a 

“broken-shell” implosion 

𝜌 (gΤcm3) Beginning of deceleration 𝜌 (gΤcm3) Peak neutron production 
Areal-density perturbation spectrum 

t=205.0ns t=205.3ns 

in the beginning of deceleration 

t=205.0ns 

Beam modes 
ℓ = 22 and 24ℓ = 6 
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• RT bubbles fully penetrate the shell in the middle of the acceleration stage • Icosahedral mode 6 is sizable 
but not dominant • Significant ablator mass injection into hot spot 

• 3-D neutron yield/1-D neutron yield = 0.08 (without burn) 
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Summary/Conclusions 

Three-dimensional hydrodynamic simulations suggest that dynamic shell (DS) 

implosions can tolerate perturbations from laser beam overlapping 

• Effects of perturbations from beam overlapping in directly driven DS designs were studied using 3-D ASTER† 

hydrodynamic simulations 

• Optimum distributions of beams around targets were found using the triangulated icosahedron geometry modified 
by the charged-particle method 

• Designs with low IFAR‡ (<30) are required for avoiding unstable “broken-shell” implosions 

𝜋Τ• Beam overlap modes (ℓ~ 𝑁𝑏) affect DS implosions mainly during the acceleration and hot-spot formation stages2 

†Igumenshchev et al., Phys. Plasmas 24, 056307 (2017). 
‡ IFAR: in-flight aspect ratio. 




