Studying Quasi-Parallel Collisionless Shocks in the Laboratory
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Laboratory quasi-parallel shock experiments are an exciting and rapidly opening
frontier
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Quasi-parallel collisionless shocks are ...
...complex, turbulent structures mediated by electromagnetic ion/ion beam instabilities

...of great interest in space and astrophysics as accelerators of high energy particles
(and may be a source of high energy cosmic rays)

...difficult to create in a laboratory environment because of the extremely long length
and time scales they require to form

A quasi-parallel shock has never been created in a laboratory experiment.

We are currently pursuing approaches at both large and small scales.
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Introduction/theory

Collisionless quasi-parallel shocks are large-scale, turbulent structures that form
when a supersonic “beam” plasma impinges on a second “core” plasma
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Collisionless
Collisions between particles (especially ions) are
dynamically unimportant.
Quasi-parallel R
Magnetic field is parallel to the shock normal. - AR0
4000*"' s 0.67
Large-scale | 53
Quasi-parallel shocks have characteristic length _ 35000 %
scales of 100’s to 1000’s of 4 (compared to a few =k 0.00 5
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* Burgess & Scholer 2015 Cambridge University Press




Introduction/theory

Quasi-parallel collisionless shocks can energize particles to high energies

« Fermi acceleration of particles to high

energy requires large system sizes &
« Large-scale magnetic turbulence at _
quasi-parallel shocks can fill this role, : f
4000 4500 5000

accelerating particles to higher energies 1000 1500 2000 2500 3000 3500
than shocks of other orientations e

Quasi-parallel astrophysical shocks

2k

are a likely source of high energy
cosmic rays.

E/E,,
Caprioli & Spitkovsky 2014 ApJ
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Introduction/theory

Quasi-parallel shocks are mediated by electromagnetic ion-ion beam instabilities
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l Wave/particle scattering
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Long instability growth times — shock width of L » 100 &

* Weidl et al. 2019 APJ
** Burgess & Scholer 2015 Cambridge University Press




Introduction/theory

What parameters are required to form a quasi-parallel collisionless shock in the

laboratory?

ry UR
LLE

Theory outlines requirements for forming a

space-relevant quasi-parallel collisionless

shock in the laboratory: Large-Scale (UCLA LAPD) — Small-Scale (Large Laser)

» L~103cm * L~1cm
. . - = N.~10"cm?3 Eauivalent | ® Ne~10%cm?
* ny/n. > 5% (Sufficient density to excite = B,~100G Parameters | * By~10°G
both instabilities)
« M, > 3 (Sufficient velocity to excite both Heuer et al. PoP 2020

instabilities)
« L 2500 9§, (Sufficient space to develop)*
« M, <10 (Similarly magnetized to shocks

Observing even the early stages of

) quasi-parallel shock formation
in space) requires a very long experiment!

* Weidl et al. 2016 PoP




Large Scale Experiments

Large scale: parallel shock beam instabilities in the Large Plasma Device
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Experiment is nominally 12 m (85 ion inertial lengths)

« Beam plasma produced by a 200 J laser

+ Diagnosed with an array of magnetic flux probes

* Gekelman et al. 2016 RSI
** Heuer et al. 2018 PoP




Large Scale Experiments

The experiment observed waves like those in Earth’s quasi-parallel foreshock
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a) Foreshock Measurements

ANV AW,

b) 260] Experirﬁent
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— 3500; c) 2D Hybrid Foreshock Simulation
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3000,
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tfc;
2500 Frequency of waves in experiment are ~8x
_ Ll i higher because different ions are present
2000 2500 3000 3500 4000 (C+4, He+) than in space (H+,H+).
X(d;)

mme AGU Press
**Heuer et al. 2018 PoP
t Heuer et al. 2020 ApJL




Large Scale Experiments

Velocity dispersion severely limits the effective length of large experiments
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Density rapidly decrease with distance
from the laser target, stopping instability
growth. 2/6,;
0 2 4 6 8 10 12
1.21 ‘ : - -
e 1/z°
Two possible solutions moving forward 1.0 \ —— Measured
: i o
1. Combine a series of pulses to extend $08 \
the LPP. = f ~ 5f
_ = 0.6
2. Scale the experiment down to be =
closer to the LPP scale (requires much > 0.4
higher laser energies). = N T
0.2- N
0.0 - ‘ ‘ - - . ‘
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z (cm)

* Heuer et al. 2020 PoP




Small Scale Experiments

Towards quasi-parallel shocks on large laser facilities (work in progress!)
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(a) lonize gas fill (b) Drive piston plasma | (c) Diagnose shock Parameter Proposed
oA ) Experiment
as pipe L/d. 620
a5 PP background plasma § g g 10
. accelerated ions (Livy) * wy 46
B B
0 0 \ M, 14
~1cm
xerays L/, 2
% shock
%2 Current generation laser facilities

could create shock systems of
unprecedented size.

piston target
drive beams
* Image Credit: Derek Schaeffer




Small Scale Experiments

Exploring quasi-parallel shocks with PIC simulations
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go B X>=81 C.-'Wpf
y averaged E
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n/ng

Simulations by Victor Zhang (graduate student)
Presentation (on perpendicular shocks): Z006.00002
(Friday @ 9:40 am)
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Laboratory quasi-parallel shock experiments are an exciting and rapidly opening
frontier
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Quasi-parallel collisionless shocks are ...
...complex, turbulent structures mediated by electromagnetic ion/ion beam instabilities

...of great interest in space and astrophysics as accelerators of high energy particles
(and may be a source of high energy cosmic rays)

...difficult to create in a laboratory environment because of the extremely long length
and time scales they require to form

A quasi-parallel shock has never been created in a laboratory experiment.

We are currently pursuing approaches at both large and small scales.
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Instability theory
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Introduction/theory

Different beam instabilities scatter particles in different ways
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“Pulse trains” could push large-scale experiments further
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Trains of pulses could:

« Allow higher source energies to be used (by lowering
average intensity)

« Maintain LPP velocity (by maintaining peak intensity).

* Produce a spatially extended plasma but quasi-
uniform plasma
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Initial pulse train simulations showed the = 4 -3 2 -1 0
Log1o(np/n.) (Approximate)

formation of non-linear waves.

* Heuer et al. 2020 PoP
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