Studying Quasi-Parallel Collisionless Shocks in the Laboratory

Scaled Experiments

Peter V. Heuer University of Rochester Laboratory for Laser Energetics 63rd Annual Meeting of the American Physical Society Division of Plasma Physics Pittsburgh, PA 11/8/21-11/12/21

Summary

Laboratory quasi-parallel shock experiments are an exciting and rapidly opening frontier

Quasi-parallel collisionless shocks are ...

...complex, turbulent structures mediated by electromagnetic ion/ion beam instabilities

- ...of great interest in space and astrophysics as accelerators of high energy particles (and may be a source of high energy cosmic rays)
- ...difficult to create in a laboratory environment because of the extremely long length and time scales they require to form

A quasi-parallel shock has never been created in a laboratory experiment.

We are currently pursuing approaches at both large and small scales.

Collaborators

Y. Zhang, C. Ren, J. R. Davies University of Rochester Laboratory for Laser Energetics

> D. B. Schaeffer Princeton University

M. S. Weidl Max-Planck-Institut fur Plasmaphysik

C. Niemann University of California Los Angeles

W. Fox Princeton Plasma Physics Laboratory

> D. Caprioli University of Chicago

Introduction/theory

Collisionless quasi-parallel shocks are large-scale, turbulent structures that form when a supersonic "beam" plasma impinges on a second "core" plasma

Collisionless

Collisions between particles (especially ions) are dynamically unimportant.

Quasi-parallel

Magnetic field is parallel to the shock normal.

Large-scale

Quasi-parallel shocks have characteristic length scales of 100's to 1000's of δ_{di} (compared to a few δ_{di} for quasi-perpendicular shocks).

Turbulent structures

Upstream of quasi-parallel shocks is characterized by large amplitude magnetic turbulence (the "foreshock")

* Burgess & Scholer 2015 Cambridge University Press

Quasi-parallel collisionless shocks can energize particles to high energies

- Fermi acceleration of particles to high energy requires large system sizes
- Large-scale magnetic turbulence at quasi-parallel shocks can fill this role, accelerating particles to higher energies than shocks of other orientations

Quasi-parallel astrophysical shocks are a likely source of high energy cosmic rays.

Quasi-parallel shocks are mediated by electromagnetic ion-ion beam instabilities

Introduction/theory

What parameters are required to form a quasi-parallel collisionless shock in the laboratory?

Theory outlines requirements for forming a space-relevant quasi-parallel collisionless shock in the laboratory:

- L << λ_{mfp} (Collisionless)
- n_b/n_c > 5% (Sufficient density to excite both instabilities)
- M_A > 3 (Sufficient velocity to excite both instabilities)
- $L \ge 500 \, \delta_i$ (Sufficient space to develop)*
- M_A < 10 (Similarly magnetized to shocks in space)

Observing even the early stages of quasi-parallel shock formation requires a very long experiment!

* Weidl et al. 2016 PoP

Large scale: parallel shock beam instabilities in the Large Plasma Device

- Experiment is nominally 12 m (85 ion inertial lengths)
- Beam plasma produced by a 200 J laser
- Diagnosed with an array of magnetic flux probes

* Gekelman et al. 2016 RSI ** Heuer et al. 2018 PoP

UR

The experiment observed waves like those in Earth's quasi-parallel foreshock

[†] Heuer et al. 2020 ApJL

Velocity dispersion severely limits the effective length of large experiments

Density rapidly decrease with distance from the laser target, stopping instability growth.

Two possible solutions moving forward

- 1. Combine a series of pulses to extend the LPP.
- 2. Scale the experiment down to be closer to the LPP scale (requires much higher laser energies).

Towards quasi-parallel shocks on large laser facilities (work in progress!)

Exploring quasi-parallel shocks with PIC simulations

Simulations by Victor Zhang (graduate student) Presentation (on perpendicular shocks): ZO06.00002 (Friday @ 9:40 am)

Summary

Laboratory quasi-parallel shock experiments are an exciting and rapidly opening frontier

Quasi-parallel collisionless shocks are ...

...complex, turbulent structures mediated by electromagnetic ion/ion beam instabilities

- ...of great interest in space and astrophysics as accelerators of high energy particles (and may be a source of high energy cosmic rays)
- ...difficult to create in a laboratory environment because of the extremely long length and time scales they require to form

A quasi-parallel shock has never been created in a laboratory experiment.

We are currently pursuing approaches at both large and small scales.

Backup Slides

Instability theory

Different beam instabilities scatter particles in different ways

"Pulse trains" could push large-scale experiments further

Trains of pulses could:

- Allow higher source energies to be used (by lowering average intensity)
- Maintain LPP velocity (by maintaining peak intensity).
- Produce a spatially extended plasma but quasiuniform plasma

Initial pulse train simulations showed the formation of non-linear waves.

 $Log_{10}(n_b/n_c)$ (Approximate)

