Thermal Emission and Reflectivity of Shocked SiO, Aerogel
for Broadband Optical Probing
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We have studied SiO, aerogel to develop a broadband optical source for high
energy density physics (HEDP) experiments
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+ Traditional Thomas-Fermi models significantly overpredict brightness
temperature (spectral radiance) in shock compressed aerogel, which can be
attributed to a combination of microstructure effects and a radiative precursor

« Si0O, aerogel’s T-u, behavior was expected to be quadratic similar to higher
density polymorphs (fused silica, quartz, Stishovite), however we observe a
linear trend

« A radiance model has been developed as a pragmatic approach to designing
laser-driven shock experiments involving SiO,
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Optical probes are necessary for measurements of optical and electronic properties

at extreme conditions LR
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Hydrogen Phase Diagram

» Optical spectroscopy can be used to observe band
gap closure during compression

« Other topics of interest: d-band slitting in
compressed aluminum, electride phases in alkali
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Decaying shocks were driven through aerogel samples with initial densities of 0.1,

0.2, and 0.3 g/cc
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Predictions of brightness temperature in shocked aerogel are significantly higher

than the observed values
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+ Disagreement between predictions and data
might be due to:
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1. Overestimation of the emissivity
2. Microstructure

»

3. Radiative Precursor
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Reflectance measurements are similar to those of solid quartz, suggesting that the
temperature discrepancy cannot be corrected further through the emissivity
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Results for 0.2 g/cc match well with QMD simulations

UNIVERSITY of

< @,, ol




Linear T-ug behavior was observed for silica aerogel, contrary to the predicted
quadratic behavior exhibited by higher density polymorphs
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SiO, aerogel was expected to have a higher
brightness temperature than fused silica,

quartz, and Stishovite

An emissivity correction is included in the

shown data
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A radiance model was developed for convenient use when designing experiments

involving SiO,
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* On the right is a modeled three-component
target with the same CH/Quartz/Sample
configuration shown previously
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* 0.1 and 0.2 g/cc aerogel produce the
brightest shocks when driven with less than
4E13 W/cm?. If you can drive a target with
greater than 4E13 W/cm?, then fused silica
will produce the brightest shocks.
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Conclusions

We have studied SiO, aerogel to develop a broadband optical source for high
energy density physics (HEDP) experiments
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+ Traditional Thomas-Fermi models significantly overpredict brightness
temperature (spectral radiance) in shock compressed aerogel, which can be
attributed to a combination of microstructure effects and a radiative precursor

« Si0O, aerogel’s T-u, behavior was expected to be quadratic similar to higher
density polymorphs (fused silica, quartz, Stishovite), however we observe a
linear trend

« A radiance model has been developed as a pragmatic approach to designing
laser-driven shock experiments involving SiO,




