Plasma Density [x10²⁴ cm⁻³] 60 1200 5 ຸເ ^{50 '} ຮ 4.5 100 1000 4 Plasma Density [10²³ 50 **Binned Intensity** 800 40 3.5 Space [µm] with they 3 30 0 600 2.5 2 20 400 -50 1.5 1 10 200 -100 0.5 0 0 -150 -150 -100 -50 0 50 100 150 -100 -50 50 100 -150 0 **Object Space [µm]** Space [µm]

Schlieren Refraction Measurements of Implosion Density Profiles

Schlieren refraction imaging could be an informative diagnostic for plasma density profiles in-flight and near stagnation

• The density profile on the inner side of a driven ICF target can have detrimental affects on implosion dynamics

LLE

- Indirect evidence of this has been seen in early hot spot emission
- An x-ray refraction measurement could uncover details of this density profile thus far unseen by x-ray radiography and refraction enhanced imaging
- A knife-edge schlieren system is being designed for the measurement of a refraction map
 - Initial testing can take advantage of the existing crystal imaging system on OMEGA-EP for diagnostic development and OMEGA for warm/cryo measurements

Motivation

The motivation for a refraction diagnostic is to gain more information about the

density profile inside the shell through its first derivative

d(LI)/dx: AFR or Schlieren (refraction)

 $d^2(LI)/dx^2$: RER (shadowgraphy)

Access to the refraction angle is obtained in the far field of the imaging object

where the angle is mapped to space (spatial Fourier transform)

backlighter object lens Fourier Image plane f_{lens} plane r_F r_F

Note : A Fresnel zone plate or Crystal imager is

required. Pinhole imaging does not work

A filter is used at the Fourier plane to encode information about θ_{ref} that can be interpreted in the image plane

A schlieren diagnostic takes advantage of the spatial bandwidth of the backlighter

using a knife edge to image the amount of refraction

- The most common schlieren stop is a knife edge cutting half of the k-vectors resulting in a 50% transmission
- Refraction vertically up passes more light beyond the knife : increased intensity
- Refraction vertically down passes less light beyond the knife : decreased intensity
- A refraction map versus space is directly read at the image plane (assuming background free!)
- The dynamic range of the measurement is 0% to 100% intensity modulation

The current crystal imaging system on OMEGA is considered for a schlieren

diagnostic

- Magnification = 15
- Resolution = 10 µm (limited by crystal aberrations)

A ray trace program was set up to investigate the features of a schlieren imaging

system

Adding a 50% schlieren stop cuts the signal in half but doesn't affect the profile in the image plane

Removing the schlieren stop, and turning on refraction shows a flat image plane, as

expected

Re-inserting the schlieren stop uncovers a refraction profile

UR

ROCHESTER

The full system view shows additional filtration of the imploding target's self-

emission due to the schlieren stop

ROCHESTER

During the acceleration/deceleration phases of an implosion, we may be able to

obtain more information about the extent of the inner surface

Closer to stagnation, the refraction and absorption are combined giving more

information about the density profile

Conclusions

Schlieren refraction imaging could be an informative diagnostic for plasma density profiles in-flight and near stagnation

• The density profile on the inner side of a driven ICF target can have detrimental affects on implosion dynamics

LLE

- Indirect evidence of this has been seen in early hot spot emission
- An x-ray refraction measurement could uncover details of this density profile thus far unseen by x-ray radiography and refraction enhanced imaging
- A knife-edge schlieren system is being designed for the measurement of a refraction map
 - Initial testing can take advantage of the existing crystal imaging system on OMEGA-EP for diagnostic development and OMEGA for warm/cryo measurements

