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Summary

• In the hot-spot ignition approach, smaller hot spots are advantageous in minimizing 

the  required energy coupled to the target, but they lead to higher shell convergence 

and larger Rayleigh–Taylor (RT) amplification during deceleration

• Deceleration RT growth can be significantly reduced by lowering the density 

of the central (void) region in the target*

• Density in the central region and target convergence ratio can be varied over a large range 

in the dynamic-shell design** by changing the strength of the outgoing blast wave and 

extending the density relaxation phase

Deceleration Rayleigh–Taylor instability can be mitigated  in ICF designs 

by reducing density in the central (vapor) region of the target

* Y. Lawrence, next talk

** V. Goncharov et al., Phys. Rev. Lett. 125, 065001 (2020).
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Smaller hot spots are advantageous for minimizing the hot-spot 

energy required for ignition

• Ignition criterion

𝑬𝐡𝐬 > 𝟏𝟔 𝐤𝐉
𝑹𝐡𝐬

𝟓𝟎 𝝁𝐦

𝟐

𝑷𝐡𝐬𝑹𝐡𝐬 > 𝟏 𝐆𝐛𝐚𝐫 × 𝐜𝐦; 𝑻𝐢 > 𝟒. 𝟓 𝐤𝐞𝐕
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Smaller hot spots, however, lead to enhanced hot-spot and main 

fuel distortions

𝑬𝐡𝐬 > 𝟏𝟔 𝐤𝐉
𝑹𝐡𝐬

𝟓𝟎 𝝁𝐦

𝟐

𝑷𝐡𝐬𝑹𝐡𝐬 > 𝟏 𝐆𝐛𝐚𝐫 × 𝐜𝐦; 𝑻𝐢 > 𝟒. 𝟓 𝐤𝐞𝐕
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Smaller hot spots lead to enhanced deceleration RT growth

𝑬𝐡𝐬 > 𝟏𝟔 𝐤𝐉
𝑹𝐡𝐬

𝟓𝟎 𝝁𝐦

𝟐

𝑷𝐡𝐬𝑹𝐡𝐬 > 𝟏 𝐆𝐛𝐚𝐫 × 𝐜𝐦; 𝑻𝐢 > 𝟒. 𝟓 𝐤𝐞𝐕
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Reducing the target central density leads to shorter shell deceleration distance and 

larger ablation stabilization* 
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*Y. Lawrence, next talk 
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Shell deceleration delay leads to shorted deceleration distance in lower vapor density targets.
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Reducing the target central density leads to shorter shell deceleration distance and 

larger ablation stabilization* 

• Smaller Rhs leads to greater Vabl and ablation stabilization*
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*Y. Lawrence, next talk

**V.N. Goncharov et al., Phys. Plasmas 7, 5118 (2000) 

Density in the central region can be reduced by

• Lowering target temperature to 18K (only × 0.4 reduction – not enough and ice uniformity problem)

• Using dynamic shell design (x 0.1 and lower is achievable)
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The dynamic-shell design evolves through three stages*

Shock 

heating
Shell acceleration 

and hot-spot 

formation

0 50 100 150 200 2501

10

100

P
o

w
e
r 

(T
W

)

Time (ns)

Blast-wave expansion, 

density relaxation, and

shell formation

Fuel flow
Converging 

shocks

Shock-

collision 

region

Lower-density 

region

Shell-

forming 

shocks

* V. Goncharov et al., Phys. Rev. Lett. 

125, 065001 (2020).
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Density in the central region can be controlled by changing 

strength of the outgoing blast wave and duration of the density 

relaxation phase

(B)

(A)

Hydrodynamic simulations confirm significant reduction in deceleration RT growth 

for design A (see next talk by Y. Lawrence)
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Stability studies of the dynamic shell designs are currently underway using 

hydrodynamic simulations

The next three talks will discuss:

- Deceleration RT growth in low central density and high-density dynamic-shell designs – Yousef Lawrence

- Beam illumination symmetry optimization – Will Trickey

- 3-D ASTER simulations of dynamic-shell designs – Igor Igumenshchev
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Summary

• In the hot-spot ignition approach, smaller hot spots are advantageous in minimizing 

the  required energy coupled to the target, but they lead to higher shell convergence 

and larger Rayleigh–Taylor (RT) amplification during deceleration

• Deceleration RT growth can be significantly reduced by lowering the density 

of the central (void) region in the target*

• Density in the central region and target convergence ratio can be varied over a large range 

in the dynamic-shell design** by changing the strength of the outgoing blast wave and 

extending the density relaxation phase

Deceleration Rayleigh–Taylor instability can be mitigated  in ICF designs 

by reducing density in the central (vapor) region of the target

* Y. Lawrence, next talk

** V. Goncharov et al., Phys. Rev. Lett. 125, 065001 (2020).


