Optical Shock-Enhanced Self-Photon Acceleration

P. Franke, D. Ramsey, T. T. Simpson, D. Turnbull, D. H. Froula, and J. P. Palastro **University of Rochester** Laboratory for Laser Energetics

Space (z)

Time (t)

63rd Annual Meeting of the **American Physical Society Division of Plasma Physics** Pittsburgh, PA 8-12 November 2021

0 -5 -10

 $n_{
m e0} = 4.5 \times 10^{20} \, {
m cm}^{-3}$

-5 -10 10

0

t (fs)

90 µm

5

t (fs)

LG₁₀

50

67

100

200

400

(mu)

2

 \bigcirc

Summary

A photon accelerator driven by a pulse with spatiotemporal and transverse intensity profile shaping generates extreme ultraviolet attosecond pulses

• A "structured flying focus" pulse overcomes the limitations of a conventional photon accelerator

• Velocity control enables a positive feedback loop between intensity self-steepening, sharpening accelerating gradients, and increasing rates of spectral broadening, forming an optical shock

Multi-octave spectra extending from 400 nm – 60 nm wavelengths, which support near-transform limited 350 as pulses, are generated over 90 μm of interaction length

1. Photons outrun the accelerating gradient ("dephasing")

 \mathcal{D}

1. Photons outrun the accelerating gradient ("dephasing")

 \mathcal{D}

1. Photons outrun the accelerating gradient ("dephasing")

 \mathcal{D}

- 1. Photons outrun the accelerating gradient 2. Diffraction ar
- Space \rightarrow $\left| \partial \underline{n_e} \right|_{\mathbf{Z}}$ Time $\omega_{max} \propto$ ∂z Electron density \checkmark Vg

("dephasing")

2. Diffraction and refraction limit the gradient and its propagation length

Rayleigh length

 \mathcal{D}

Time (t)

1. Photons outrun the accelerating gradient ("dephasing")

2. Diffraction and refraction limit the gradient and its propagation length

 \mathcal{D}

Rayleigh length

1. Photons outrun the accelerating gradient ("dephasing")

2. Diffraction and refraction limit the gradient and its propagation length

A "structured flying focus" pulse can overcome the limitations of a conventional photon accelerator

1. Spatiotemporal control mitigates the effects of dephasing and diffraction

 \bigcirc

A "structured flying focus" pulse can overcome the limitations of a conventional photon accelerator

1. Spatiotemporal control mitigates the effects of dephasing and diffraction

 \bigcirc

2. Transverse intensity control mitigates the effects of diffraction and refraction

2D finite-difference time-domain simulations were used to investigate shaped laser pulses interacting with gas-density plasma

 \bigcirc

The inside pulse is guided over 5 Rayleigh lengths, leading to a concentration of energy in time and space

 \bigcirc

Extreme spectral broadening of the pump pulse occurs over only 90 μm of interaction length

E29598

 \bigcirc

Extreme spectral broadening of the pump pulse occurs over only 90 μm of interaction length

E29598a

 \bigcirc

Extreme spectral broadening of the pump pulse occurs over only 90 μm of interaction length

A 1.3× transform limited, focusable, 350 as pulse can be isolated using a 200nm thick Mg-film (short-pass filter cut on 124 nm)*

ROCHESTER *G. D. Tsakiris *et al.* New J. Phys. **8**, 19 (2006).

P. Franke et al. Phys. Rev. A 104, 043520 (2021).

E29599

 \bigcirc

E29599a

 \bigcirc

 \bigcirc

 \bigcirc

 \mathcal{O}

A photon accelerator driven by a pulse with spatiotemporal and transverse intensity profile shaping generates extreme ultraviolet attosecond pulses

• A "structured flying focus" pulse overcomes the limitations of a conventional photon accelerator

Velocity control enables a positive feedback loop between intensity self-steepening, sharpening accelerating
gradients, and increasing rates of spectral broadening, forming an optical shock

Multi-octave spectra extending from 400 nm – 60 nm wavelengths, which support near-transform limited 350 as pulses, are generated over 90 µm of interaction length

*pfranke@ur.rochester.edu

