Inference of Isotropic and Anisotropic Flow in Laser
Direct-Drive Cryogenic DT Implosions on OMEGA
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A model to predict the yield degradation from anisotropic flow due to low-
modes (I=1) shows good agreement with experimental data
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« An isotropic and anisotropic flow can introduce additional broadening of the second
moment on the energy distribution of fusion-produced neutrons.”

« An experimental campaign was designed to introduce low-mode variations in the fuel
assembly with predefined target offsets.

 The anisotropic flow inferred from the second moment is consistent with a systematic
low-mode in the laser system.

K. Woo et al., Phys. Plasmas 27, 062702 (2020).
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Two different mechanism can introduce broadening on the energy distribution of
fusion-produced neutrons used to infer the temperature of the reactants
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Anisotropic and isotropic flows is a signature of hot-spot residual kinetic energy (RKE) and
can be determined since they have a different effect on the DT and DD ion temperatures.

*Murphy et al., Rev. Sci. Instrum. 68, 614 (1997).
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Apparent lon Temperature Measurements

A generalized forward-fit technique is used to infer the spectral moments of
the peak distributions from a neutron-time-of-flight (nTOF) diagnostic
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The line-of-sight S(E),, attenuation, non-linear light output S(E),,;..

and R(E,t) were modeled using a neutron transport code (MCNP).

*L. Ballabio, J. Kallne, and G. Gorini, Nucl. Fusion 38, 1723 (1998).
“Mohamed et al., Submitted to Journal of Applied Physics. (2020).
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Experimental Campaign

An experimental campaign was designed to introduce low-mode variations
In the fuel assembly with predefined target offsets
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The target was positioned with 5 different offsets to the
detectors line-of-sight (i.e. P7).

1. Target chamber center (TCC)

2. Away from detector (40 um)

3. Toward detector (40 um)

4. Orthogonal to detector (90 um) [not shown]
5. Along the positive z-axis (20 um) [not shown]

Laser parameters remained constant in this direct-drive
cryogenic DT experimental campaign.

The goal for this campaign was to see if variations in the experimental
parameters including residual kinetic energy (RKE) can be inferred.




Experimental Setup

Neutron time-of-flight diagnostics are positioned strategically around the
OMEGA target chamber to provide a set of 3D measurements
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OMEGA Target Chamber

The 24 moment of the neutron distribution is
used to interpret the apparent temperature of
the reactants from several lines-of-sight.

P7

TP =5 lines-of-sight (H2,P4,H8,H4,P7)

los

TPP =1 lines-of-sight (P7)
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Modal Variation in Apparent lon Temperatures

A variation in the apparent ion temperatures can be well represented with a
cosine-square variation along the measured hot-spot flow axis
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The hot-spot flow is directed away from the P7 line-
of-sight as expected with the presence of a |I=1 mode

TPT = T™" + Mprojs, + Mprognis,cos®(6)




Experimental Data of lon Temperature Variation

A semi-empirical model of the ion temperature variation shows good
agreement with the experimental data with the -40 um target offset
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Evaluation of the anisotropic term.

In the presence of large anisotropic flows the
lon temperature asymmetry can explain yield
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K. Woo et al., Phys. Plasmas 27, 062702 (2020).
“A.Lees et al., Phys. Rev. Lett. 127, 105001 (2021)



Low-Mode (I=1) Yield Degradation

A model to predict the yield degradation from anisotropic flow due to low-
modes shows good agreement with experimental data
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Summary/Conclusions

A model to predict the yield degradation from anisotropic flow due to low-
modes (I=1) shows good agreement with experimental data
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« An isotropic and anisotropic flow can introduce additional broadening of the second
moment on the energy distribution of fusion-produced neutrons.”

« An experimental campaign was designed to introduce low-mode variations in the fuel
assembly with predefined target offsets.

 The anisotropic flow inferred from the second moment is consistent with a systematic
low-mode in the laser system.

K. Woo et al., Phys. Plasmas 27, 062702 (2020).
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Low-Mode (I=1) Yield Degradation

A model to predict the yield degradation from anisotropic flow due to low-
modes shows good agreement with experimental data
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