A local-field approach to understanding multibeam laser-plasma instabilities

R. K. Follett
University of Rochester
Laboratory for Laser Energetics

APS DPP
Nov 8-12, 2021
The local-field approach is a procedure for developing simple models of laser-plasma instabilities in complex laser configurations

- Simple models for laser-plasma instabilities are often limited to plane-wave thresholds, but speckled laser beams introduce local field structure.

- Global instability behavior can be understood by convolving the local instability behavior with the statistical properties of the laser field.

- A semi-analytic model for the absolute two-plasmon-decay (TPD) instability was developed that accurately predicts the instability threshold for a speckled beam.

This approach can be applied to other instabilities or expanded to include effects like polarization smoothing or speckle motion.
Collaborators

H. Wen, J. G. Shaw, D. H. Froula, A. Maximov, A. Solodov, D. Turnbull, and J. P. Palastro

University of Rochester
Laboratory for Laser Energetics

J. F. Myatt
University of Alberta

J. W. Bates
Naval Research Laboratory
Motivation

The prevailing picture of multibeam laser-plasma interactions does not account for the local structure of a speckled laser field.

Idealized picture of multibeam interactions with a shared daughter wave along the axis of symmetry*

Electric field for a 23° cone of beams with phase plates

The local fields and statistical properties of a 23° cone of beams are similar to a single f/1 beam

As an example, consider the absolute TPD instability in a speckled beam
The local-field approach uses the instability behavior in a single speckle to construct a semi-analytic theory of the global behavior

\[I_{\text{thr}} = \text{(function of speckle statistics)} \times \text{(function of single-speckle instability properties)} \]

\[= \frac{1}{\langle I_M / I_0 \rangle} \times I_{\text{thr,speckle}}(L_n, T_e, \lambda_0, w_s, l_s) \]

\[\langle I_M / I_0 \rangle \text{ can be determined analytically using the probability distribution of speckle intensities*} \]

\[\langle I_M / I_0 \rangle = -\sum_{a=1}^{N} \left(\frac{N}{a} \right) a^{-1-a} \left(\frac{-2 - \pi}{4 + \pi} \right)^a e^{\frac{a(4+\pi)}{2+\pi}} \Gamma \left[1 + a, \frac{a(4+\pi)}{2+\pi} \right] \]

\[N = \frac{P_L}{\langle P_s \rangle} \approx \frac{w_g}{f_0 \lambda_0} \frac{4+\pi}{3+\pi} \sqrt{\log 2} \frac{\sqrt{\pi}}{\pi} \]

Single-speckle simulations can be used to find $I_{\text{thr,speckle}}(L_n, T_e, \lambda_0, w_s, l_s)$

Single-speckle absolute TPD threshold

$(L_n=200 \mu m, T_e=4 \text{ keV}, \lambda_0=0.351 \mu m)$

![Graph showing single-speckle absolute TPD threshold](image-url)
Single-speckle simulations can be used to find $I_{\text{thr, speckle}}(L_n, T_e, \lambda_0, w_s, l_s)$

An analytic approximation can be obtained by assuming the transverse spectrum of absolutely unstable modes be broad enough for absolute growth to occur within a speckle:

$$\Delta k_\perp = \frac{2\pi}{\text{speckle width}} = \frac{2\pi}{f_\# \lambda_0}$$

$$\frac{\Delta k_\perp}{k_0} = \frac{1}{f_\#}$$
Single-speckle simulations can be used to find $I_{\text{thr, speckle}}(L_n, T_e, \lambda_0, w_s, I_s)$

Single-speckle absolute TPD threshold
($L_n=200 \, \mu m$, $T_e=4$ keV, $\lambda_0=0.351 \, \mu m$)

![Graph showing $I_{\text{thr, speckle}}/I_{\text{thr, TPD}}$ vs. Speckle width (µm)]
The analytic approximations show good agreement with speckled-field thresholds calculated using LPSE.

2-D absolute TPD threshold
($L_n=200 \, \mu m, \, T_e=4 \, keV$)

3-D absolute TPD threshold
($L_n=400 \, \mu m, \, T_e=4 \, keV$)
The local-field approach is a procedure for developing simple models of laser-plasma instabilities in complex laser configurations.

- Simple models for laser-plasma instabilities are often limited to plane-wave thresholds, but speckled laser beams introduce local field structure.
- Global instability behavior can be understood by convolving the local instability behavior with the statistical properties of the laser field.
- A semi-analytic model for the absolute two-plasmon-decay (TPD) instability was developed that accurately predicts the instability threshold for a speckled beam.

This approach can be applied to other instabilities or expanded to include effects like polarization smoothing or speckle motion.