
We are developing a transfer learning model that can directly predict experimental 
observables using experimental inputs, i.e., laser pulse shape and target specifi cations 
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• Following the transfer learning approach of Humbird et al.,*  we are developing a neural network (NN) 
predicting capability for the fusion yield and areal densities of OMEGA cryogenic implosions

• This approach integrates simulations with experiments by fi rst developing a model that emulates 
simulations, which is subsequently calibrated/retrained using limited experimental data

• The model requires only experimental inputs (laser pulse and target specifi cations) to accurately predict 
experimental observables 

• This enables making changes directly in input space and assess effects on implosion performance 
• This NN model can be used for rapid exploration of a high-dimensional input parameter space 

* K. D. Humbird et al., IEEE Trans. Plasma Sci. 48, 61 (2020).

Summary
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Inertial confi nement fusion radiation-hydrodynamic simulations do not 
consistently predict OMEGA cryogenic implosion experiments
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Transfer learning is a useful technique for building the deep learning model because it 
alleviates the challenge of having small datasets, as is the case with ICF experiments  
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• Transfer learning takes a pre-existing neural net and adapts it for a different related task
Cats Dog

Cat, Yes/No? Dog, Yes/No?

Transfer learning 
General features

(eyes, ears, legs, etc.)

Detailed features
(size, whiskers, cute, etc.)

General features
(eyes, ears, legs, etc.
have overlap 

Retrain using limited dog
data. Learns detailed
features (size, hair
distribution, happy, etc.)

ICF: inertial confi nement fusion

A low-fi delity neural net model is trained from a simulation 
database of parametrized laser and target specifi cations  
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• Model developed in TensorFlow
• 22k simulations used for training 
• Low-fi delity means LILAC (1-D ICF simulation code) with no CBET, without nonlocal thermal transport
• 7500 used for validation Simulation inputs Laser pulse shape + 

target specs
(Nine parameters)

Simulation outputs

Low-fi delity model

Hidden layers 4
Hidden layer units 11-13-22-16

Learning rate 0.004
Batch size 1500

Epochs 1000

CBET: cross-beam energy transfer
K. D. Humbird et al., IEEE Trans. Plasma Sci. 48, 61 (2020).

Simulation inputs Experiment inputs

Simulation outputs Experiment outputs

Transfer learning “Pre-existing” neural-net
model. Obtained by

training on LILAC
simulations

Train last layers using
scarce experimental
data from Omega

Transfer learning is used to make a single model that combines 
simulations with experiments*

TC15901

Train NN on simulation database Retrain NN on OMEGA experiments

* K. D. Humbird et al., IEEE Trans. Plasma Sci. 48, 61 (2020).

Currently a statistical approach that combines 1-D simulated parameters with 
experimental results to correct code output and predict implosion performance is utilized  
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• OMEGA implosions are currently designed using a statistical model that maps experimental results 
into a simulation database

Yexp " FSM  [ V  i1-D    sim ,  a  1-D  sim ,  Y  1-D   sim ,  tR  1-D   sim ,  T   1-D    sim  ... output 1-D simulation]      

• The new prediction model will use the same inputs as the experiments: the laser pulse shape 
and target specifi cations

• This new prediction model will facilitate rapid exploration of a high-dimensional input parameter space 

Yexp " F NN [laser pulse shape + target specs]

Motivation

V. Gopalaswamy et al., Nature 565, 581 (2019). 

Initial results show that the transfer learning model retrained 
on 19 experiments accurately predicts the validation data 
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* K. D. Humbird et al., IEEE Trans. Plasma Sci. 48, 61 (2020).

To test the approach, we fi rst develop the model 
in a restricted experimental input parameter space 
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• Picket power
• Foot power 
• Foot picket width
• Foot width 
• Average drive  
• Drive rise time 
• Energy on target 
• Ice thickness 
• Capsule outer radius
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The experimental inputs form a high-dimensional parameter space
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• Spike start time
• Spike slope 
• Energy on target
• Thickness of DT fuel
• Thickness of ablator
• Composition of fuel
• Composition of ablator
• Outer radius
• etc.

• Picket powers
• Foot power 
• Foot picket width
• Foot width 
• Foot rise time 
• Rise time 
• Drop power
• Flat top 
• Spike power

V. Gopalaswamy et al., Nature 565, 581 (2019);
V. Gopalaswamy, Ph.D. thesis, University of Rochester, 2021
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Transfer learning is used to integrate the low-fi delity neural-net 
model with experiments 
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• The fi rst two layers are frozen
• The last two layers are retrained

• 19 experiments used for training 
• 4 experiments used for validation 

Experiment inputs Laser pulse shape + 
target specs

(Nine parameters)

Experiment outputs

Train last layers using
19 OMEGA shots

Low-fi delity model
Hidden layers 4

Hidden layer units 11-13-22-16
Learning rate 0.004

Batch size 1500
Epochs 1000

Low-fi delity model
Retrained layers Last 2

Learning rate 0.0003
Batch size 1

Epochs 2300
K. D. Humbird et al., IEEE Trans. Plasma Sci. 48, 61 (2020).

To extend the applicability of the model to a broader class of laser pulse shapes, 
an autoencoder is being developed 
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Latent
representation

Reduces dimensionality Reproduces output
Laser power history (input)
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Laser power history (output)
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1 2The autoencoder reduces the dimensionality
of the laser pulse shape.

We are extending the transfer learning approach to predict experiments 
in a large parameter space of arbitrary pulse shapes and target dimensions
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Latent
representation

Pulse
shape

Experiment inputs

Experiment outputs Target specs
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The low-fi delity neural net model is an acceptable emulator of the 1-D low-fi delity simulation code

TC15908

Absorption fra
ction

Adiabat

Burn width

Bang tim
e

Convergence inner

Convergence outer
IFAR

Peak kinetic energy

Shock mass
Yield

Yield DD

Pressure

t neutron average tR

t max bang tim
e T i

 im
plosion velocityT i D

DR 0

Low-fidelity model

0.000

0.025

0.050

Pr
ed

ic
tio

n 
er

ro
r

0.075

0.100

0.125

Error =     (Low-fi delity NN)  –  (Low-fi delity LILAC)     _____________________________     (Low-fi delity LILAC) 
   

IFAR: in-fl ight aspect ratio
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