A Deep Learning Approach to Designing Inertial Confinement Fusion Experiments

Summary

We are developing a transfer learning model that can directly predict experimental observables using experimental inputs, i.e., laser pulse shape and target specifications

- Following the transfer learning approach of Humbird *et al.*,* we are developing a neural network (NN) predicting capability for the fusion yield and areal densities of OMEGA cryogenic implosions
- This approach integrates simulations with experiments by first developing a model that emulates simulations, which is subsequently calibrated/retrained using limited experimental data
- The model requires only experimental inputs (laser pulse and target specifications) to accurately predict experimental observables
- This enables making changes directly in input space and assess effects on implosion performance
- This NN model can be used for rapid exploration of a high-dimensional input parameter space

*K. D. Humbird *et al.*, IEEE Trans. Plasma Sci. <u>48</u>, 61 (2020).

A low-fidelity neural net model is trained from a simulation database of parametrized laser and target specifications

- Model developed in TensorFlow
- 22k simulations used for training
- Low-fidelity means LILAC (1-D ICF simulation code) with no CBET, without nonlocal thermal transport
- 7500 used for validation

l ow-fidelity model	
Hidden layers	4
Hidden layer units	11-13-22-16
Learning rate	0.004
Batch size	1500
Epochs	1000

CBET: cross-beam energy transfer K. D. Humbird *et al.*, IEEE Trans. Plasma Sci. <u>48,</u> 61 (2020).

Laser pulse shape +

target specs

(Nine parameters)

TC15950

TC15906

R. EJAZ, V. GOPALASWAMY, and R. BETTI

University of Rochester, Laboratory for Laser Energetics

Motivation

Currently a statistical approach that combines 1-D simulated parameters with experimental results to correct code output and predict implosion performance is utilized

 OMEGA implosions are currently designed using a statistical model that maps experimental results into a simulation database

 $Y_{exp} \rightarrow F_{SM} \left[V_{i1-D}^{sim}, \alpha_{1-D}^{sim}, Y_{1-D}^{sim}, \rho R_{1-D}^{sim}, T_{1-D}^{sim} \right]$... output 1-D simulation

• The new prediction model will use the same inputs as the experiments: the laser pulse shape and target specifications

$Y_{exp} \rightarrow F^{NN}$ [laser pulse shape + target specs]

• This new prediction model will facilitate rapid exploration of a high-dimensional input parameter space

V. Gopalaswamy *et al.*, Nature <u>565</u>, 581 (2019).

The low-fidelity neural net model is an acceptable emulator of the 1-D low-fidelity simulation code

Initial results show that the transfer learning model retrained on 19 experiments accurately predicts the validation data

We are extending the transfer learning approach to predict experiments

Error = (Low-fidelity NN) – (Low-fidelity LILAC) Low-fidelity *LILAC*)

IFAR: in-flight aspect ratio

*K. D. Humbird *et al.*, IEEE Trans. Plasma Sci. <u>48</u>, 61 (2020).

TC15902

TC15903

in a large parameter space of arbitrary pulse shapes and target dimensions

Target specs

Collaborator:

K. Humbird, Lawrence Livermore National Laboratory

- Spike slope
- Energy on target
- Thickness of DT fuel
- Thickness of ablator
- Composition of fuel
- Composition of ablator
- Outer radius
- etc.

V. Gopalaswamy *et al.*, Nature <u>565</u>, 581 (2019); V. Gopalaswamy, Ph.D. thesis, University of Rochester, 2021

Picket powers

Foot picket width

Foot power

Foot width

Rise time

Flat top

• Drop power

Spike power

• Foot rise time