Evaluation of Direct Inversion of Proton Radiographs in the Context of Cylindrical Implosions

Proton Radiograph

Direct Inversion

github.com
/mfkasim1/invert-shadowgraphy
/flash-center/PRaLine
/flash-center/PROBLEM
/mfkasim1/invert-shadowgraphy/tree/fast-inverse
/OxfordHED/proton-radiography-no-source

J. R. Davies
University of Rochester
Laboratory for Laser Energetics

63rd Annual Meeting of the American Physical Society
Division of Plasma Physics
Pittsburgh, PA
8 – 12 November 2021
Routines to obtain the line-integrated transverse Lorentz force directly from proton radiographs are publicly available**.

- If field gradients are sufficiently shallow proton trajectories do not intersect and a unique solution exists for the line-integrated transverse Lorentz force making direct inversion straightforward and ideal.
- If proton trajectories intersect there does not exist a unique solution, but we found one algorithm* that can still find a solution that minimizes proton deflection provided all deflected protons are detected.
- Direct inversion to obtain a minimum deflection solution allowed us to put a lower bound on the self-generated azimuthal magnetic field in the corona of a cylindrical implosion.

*github.com/mfkasim1/invert-shadowgraphy
**github.com/flash-center/PRaLine; github.com/flash-center/PROBLEM; github.com/mfkasim1/invert-shadowgraphy/tree/fast-inverse; github.com/OxfordHED/proton-radiography-no-source
Collaborators

D. H. Barnak, E. C. Hansen, P. V. Heuer, L. S. Leal, and J. L. Peebles

University of Rochester
Laboratory for Laser Energetics

A. Birkel
Plasma Science and Fusion Center
Massachusetts Institute of Technology
The relation between line-integrated transverse Lorentz force and proton intensity modulations can be demonstrated with a 1-D paraxial model.

- For $l \gg R$ and small deflections $\Delta v_x \ll v$ proton trajectories through the object are approximately straight lines:

 \[
 \frac{\Delta v_x}{v} \approx \frac{1}{2E} \int F_x dy = \frac{\mathcal{F}_x}{2E} \ll 1
 \]

 - E is proton energy, F is Lorentz force in the object, and \mathcal{F} is line-integrated force.
The relation between line-integrated transverse Lorentz force and proton intensity modulations can be demonstrated with a 1-D paraxial model.

For \(L \gg R \) proton deflection can be considered to occur at a distance \(L \) from the detector, giving a deflection at the detector of

\[
\Delta x \approx \frac{L F_x}{2 ME}
\]

- In object plane equivalent distance
The relation between line-integrated transverse Lorentz force and proton intensity modulations can be demonstrated with a 1-D paraxial model.

- The distribution of protons on the detector \(I \) can be obtained from the deflection \(\Delta x \) and the distribution in the absence of forces \(I_0 \)
 \[
 \frac{I}{I_0} \approx \left| 1 + \frac{L}{2EM} \frac{dF_x}{dx} \right| \quad \text{(the determinant of the Jacobian of the new positions)}
 \]
 - If \(\Delta x \) is not a differentiable, single-valued function of \(x \) this relation is not valid: proton trajectories intersect and there is no unique solution for the line-integrated transverse Lorentz force, there exists an infinite family of solutions.
The relation between line-integrated transverse Lorentz force and proton intensity modulations can be demonstrated with a 1-D paraxial model

- The distribution of protons on the detector I can be obtained from the deflection Δx and the distribution in the absence of forces I_0

\[
\frac{I}{I_0} \approx 1 + \frac{L}{2EM} \frac{dF_y}{dx}
\]

Direct inversion algorithms find displacements that map I_0 to I: the Monge Transport Problem.*

We have found five direct inversion routines on GitHub

We have found five direct inversion routines on GitHub

Solves the problem directly by moving random points on a plane to find a solution that minimizes total deflection without moving points through one another
We will refer to it as the power-diagram method after the algorithm it uses
We have found five direct inversion routines on GitHub

Solve the Monge-Ampère equation $\det \nabla^2 \Phi = f(x, \nabla \Phi)$ where $\nabla \Phi = -\mathcal{F}$

In the limit of small deflections gives a Poisson equation $\nabla^2 \Phi = I/I_0$
We have found five direct inversion routines on GitHub

Uses probabilistic methods to determine the most probable initial distribution I_0

All other routines require an I_0 assuming it to be uniform by default

(The “shadowgraphy” routines come with a denoising algorithm to obtain an I_0 from I)
We have found five direct inversion routines on GitHub

From the Monge-Ampère routines we tested these two, and we will refer to them as simply Monge-Ampère and PRNS, respectively
We chose four field profiles and generated test radiographs for dimensionless radial forces $\mu = (L/M)F_r/E$ with maxima from 1/8 to 4.

Normalized line-integrated force

<table>
<thead>
<tr>
<th>Field Profile</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>Radial electric field in an isothermal, cylindrical expansion without the exponential decay in the sheath</td>
</tr>
<tr>
<td>Tophat</td>
<td>Crude model of axial magnetic field in an implosion which is discontinuous at the shell-gas interface</td>
</tr>
<tr>
<td>Gaussian</td>
<td>The most commonly used potential, considered cylindrical and spherical</td>
</tr>
</tbody>
</table>

Setups ensured that I_0 was approximately uniform and that all deflected protons were on the radiographs.
The Monge-Ampère based routines failed to reproduce the radiographs whenever trajectories intersected.

Linear $\mu_{\text{max}} = 0.25$

Spherical Gaussian $\mu_{\text{max}} = 0.55$

Spherical Gaussian $\mu_{\text{max}} = 1.1$
The power-diagram routine found a solution for all test cases that matched the original radiograph with lower, broader field profiles.
We applied the power-diagram routine to find a second solution for the azimuthal magnetic field in a cylindrical implosion.

3-D HYDRA simulations reproduced the main bell-shaped feature due to the self-generated azimuthal magnetic field.

Applying the power-diagram routine to a radiograph generated from HYDRA fields gave an azimuthal magnetic field a factor of 1.56 lower than the original value.
We applied the power-diagram routine to find a second solution for the azimuthal magnetic field in a cylindrical implosion.

3-D HYDRA simulations reproduced the main bell-shaped feature due to the self-generated azimuthal magnetic field.

Applying the power-diagram routine to a radiograph generated from HYDRA fields gave an azimuthal magnetic field a factor of 1.56 lower than the original value.
Summary

Routines to obtain the line-integrated transverse Lorentz force directly from proton radiographs are publicly available**.

- If field gradients are sufficiently shallow proton trajectories do not intersect and a unique solution exists for the line-integrated transverse Lorentz force making direct inversion straightforward and ideal.
- If proton trajectories intersect there does not exist a unique solution, but we found one algorithm* that can still find a solution that minimizes proton deflection provided all deflected protons are detected.
- Direct inversion to obtain a minimum deflection solution allowed us to put a lower bound on the self-generated azimuthal magnetic field in the corona of a cylindrical implosion.

Questions from on-demand viewers to jdad@lle.rochester.edu

*github.com/mfkasim1/invert-shadowgraphy

**github.com/flash-center/PRaLine; github.com/flash-center/PROBLEM; github.com/mfkasim1/invert-shadowgraphy/tree/fast-inverse; github.com/OxfordHED/proton-radiography-no-source