A Dual Laser-Beam Configuration Compatible with Both Symmetric Direct Drive and Spherical Hohlraums

Summary

A laser-beam configuration is proposed that allows both symmetric direct drive and spherical indirect drive to be carried out on the same facility

- The proposed configuration is a modified version of the Lan design* for octahedral hohlraums
- The proposed configuration gives direct-drive uniformity much better than 1% with modest beam repointings chosen to match the cubic Russian laser system**
- All configurations can give indirect-drive uniformity much better than 1% but some of this should be traded off for a lower case-to-capsule ratio

LLE

Collaborators

W. Y. Wang,* M. A. Marangola,* and E. M. Campbell University of Rochester Laboratory for Laser Energetics

*also LLE Summer High School Research Program

Outline

- Description of the three configurations
- Direct-drive performance
- Indirect-drive performance

Lan proposed a design for six-hole spherical ("octahedral") hohlraums*

Figure from Jing**

TC15481

 All beams enter the laser entrance holes (LEH's) at 55°

- Port map is based on NIF quad size (100 cm) and focal length (7.7 m)
- $\phi = 11.25^{\circ}$ allows for in-tank beam dumps

NIF: National ignition facility

^{*} K. Lan et al., Phys. Plasmas 21, 010704 (2014).

^{**} L. Jing et al., Nucl. Fusion <u>57</u>, 046020 (2017).

The proposed design also accommodates direct drive

- The beams are better spread out
- Crowding near the corners is avoided

The proposed design has non-opposed beam ports (like the Lan design and the NIF)

• The geometry also allows good diagnostic access

The Russian laser system also accommodates both direct and indirect drive

The system has opposed beam ports • $\Theta = 30^{\circ}$ **62**.5° **[•**] • θ_{LEH} = 62.5° TC15485b

* VNIIEF—Russian Federal Nuclear Center

NIF shot N190227-001 ("Orange") was chosen to compare the NIF and proposed octahedral geometries for direct drive

ROCHESTER

When all three geometries were compared with center pointing, the Russian system had the best uniformity of time-integrated deposited energy

When the beams were repointed toward the Russian system, equally good uniformity was obtained

The Russian design was optimally chosen with an angle θ of 30°

TC15833

LLE

The view-factor code *LORE** obtains a capsule drive nonuniformity of only 0.1% for the proposed configuration

ROCHESTER

** K. Lan et al., Phys. Plasmas 21, 010704 (2014).

All three designs perform comparably well for all albedos

Parameters from Lan et al.*

- Hohlraum diameter 1.13 cm
- Capsule diameter 0.22 cm
- LEH diameter 0.20 cm
- Case-to-capsule ratio (CCR) 5.14

*K. Lan et al., Phys. Plasmas 21, 010704 (2014).

The case-to-capsule ratio (CCR) can be varied to trade off radiation temperature (T_r) against uniformity

UR 🔌 LLE

A laser-beam configuration is proposed that allows both symmetric direct drive and spherical indirect drive to be carried out on the same facility

- The proposed configuration is a modified version of the Lan design* for octahedral hohlraums
- The proposed configuration gives direct-drive uniformity much better than 1% with modest beam repointings chosen to match the cubic Russian laser system**
- All configurations can give indirect-drive uniformity much better than 1% but some of this should be traded off for a lower case-to-capsule ratio

LLE

Mode $\ell = 9$ dominates for the proposed system but all odd modes vanish for the Russian system

